These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10995343)

  • 1. New phenolic compounds formed by evolution of (+)-catechin and glyoxylic acid in hydroalcoholic solution and their implication in color changes of grape-derived foods.
    Es-Safi NE; Le Guernevé C; Cheynier V; Moutounet M
    J Agric Food Chem; 2000 Sep; 48(9):4233-40. PubMed ID: 10995343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New polyphenolic compounds with xanthylium skeletons formed through reaction between (+)-catechin and glyoxylic acid.
    Es-Safi NE; Le Guernevé C; Fulcrand H; Cheynier V; Moutounet M
    J Agric Food Chem; 1999 Dec; 47(12):5211-7. PubMed ID: 10606598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the reactions between (+)-catechin and furfural derivatives in the presence or absence of anthocyanins and their implication in food color change.
    Es-Safi NE; Cheynier V; Moutounet M
    J Agric Food Chem; 2000 Dec; 48(12):5946-54. PubMed ID: 11141265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isomeric influence on the oxidative coloration of phenolic compounds in a model white wine: comparison of (+)-catechin and (-)-epicatechin.
    Labrouche F; Clark AC; Prenzler PD; Scollary GR
    J Agric Food Chem; 2005 Dec; 53(26):9993-8. PubMed ID: 16366685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of copper(II) in the bridging reactions of (+)-catechin by glyoxylic acid in a model white wine.
    Clark AC; Prenzler PD; Scollary GR
    J Agric Food Chem; 2003 Oct; 51(21):6204-10. PubMed ID: 14518945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of aldehydic derivatives in the condensation of phenolic compounds with emphasis on the sensorial properties of fruit-derived foods.
    Es-Safi NE; Cheynier V; Moutounet M
    J Agric Food Chem; 2002 Sep; 50(20):5571-85. PubMed ID: 12236681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of fluorescent lighting on the browning potential of model wine solutions containing organic acids and iron.
    Grant-Preece P; Barril C; Schmidtke LM; Clark AC
    Food Chem; 2018 Mar; 243():239-248. PubMed ID: 29146334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (+)-Catechin-aldehyde condensations: competition between acetaldehyde and glyoxylic acid.
    Drinkine J; Glories Y; Saucier C
    J Agric Food Chem; 2005 Sep; 53(19):7552-8. PubMed ID: 16159185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of glutathione on the formation of methylmethine- and carboxymethine-bridged (+)-catechin dimers in a model wine system.
    Sonni F; Moore EG; Clark AC; Chinnici F; Riponi C; Scollary GR
    J Agric Food Chem; 2011 Jul; 59(13):7410-8. PubMed ID: 21591782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delaying effect of a wine Lactobacillus plantarum strain on the coloration and xanthylium pigment formation occurring in (+)-catechin and (-)-epicatechin wine model solutions.
    Curiel JA; Muñoz R; López de Felipe F
    J Agric Food Chem; 2010 Nov; 58(21):11318-24. PubMed ID: 20925383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Browning in ethanolic solutions of ascorbic acid and catechin.
    Chuang PT; Shen SC; Wu JS
    J Agric Food Chem; 2011 Jul; 59(14):7818-24. PubMed ID: 21668002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and structural characterization of new anthocyanin-derived yellow pigments in aged red wines.
    He J; Santos-Buelga C; Silva AM; Mateus N; de Freitas V
    J Agric Food Chem; 2006 Dec; 54(25):9598-603. PubMed ID: 17147451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of different yeast strains and their culture conditions on the prevention of wine model solution browning by yeast lees.
    Márquez T; Millán C; Souquet JM; Salmon JM
    J Agric Food Chem; 2009 May; 57(9):3771-9. PubMed ID: 19326869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of different phenolic copigments on the color of malvidin 3-glucoside.
    Gómez-Míguez M; González-Manzano S; Escribano-Bailón MT; Heredia FJ; Santos-Buelga C
    J Agric Food Chem; 2006 Jul; 54(15):5422-9. PubMed ID: 16848527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of anthocyanin-flavanol pigments in red wines by NMR and mass spectrometry.
    Mateus N; Silva AM; Santos-Buelga C; Rivas-Gonzalo JC; de Freitas V
    J Agric Food Chem; 2002 Mar; 50(7):2110-6. PubMed ID: 11902964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of stereochemistry of antioxidants and flavonols on oxidation processes in a model wine system: ascorbic acid, erythorbic acid, +-catechin and (-)-epicatechin.
    Clark AC; Vestner J; Barril C; Maury C; Prenzler PD; Scollary GR
    J Agric Food Chem; 2010 Jan; 58(2):1004-11. PubMed ID: 20039675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of new malvidin 3-glucoside-catechin aryl/alkyl-linked pigments.
    Pissarra J; Lourenço S; González-Paramás AM; Mateus N; Santos Buelga C; Silva AM; de Freitas V
    J Agric Food Chem; 2004 Aug; 52(17):5519-26. PubMed ID: 15315394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Xanthylium Derivatives on the Color of White Wine.
    Bührle F; Gohl A; Weber F
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28825618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenolic composition of grape stems.
    Souquet JM; Labarbe B; Le Guernevé C; Cheynier V; Moutounet M
    J Agric Food Chem; 2000 Apr; 48(4):1076-80. PubMed ID: 10775352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction between hydroxycinnamic acids and anthocyanin-pyruvic acid adducts yielding new portisins.
    Oliveira J; de Freitas V; Silva AM; Mateus N
    J Agric Food Chem; 2007 Jul; 55(15):6349-56. PubMed ID: 17602659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.