BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10995477)

  • 1. Old yellow enzyme: stepwise reduction of nitro-olefins and catalysis of aci-nitro tautomerization.
    Meah Y; Massey V
    Proc Natl Acad Sci U S A; 2000 Sep; 97(20):10733-8. PubMed ID: 10995477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase. Structure of the reduced enzyme-progesterone complex and the roles of residues Tyr186, His181, His184.
    Khan H; Barna T; Bruce NC; Munro AW; Leys D; Scrutton NS
    FEBS J; 2005 Sep; 272(18):4660-71. PubMed ID: 16156787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family.
    Stuermer R; Hauer B; Hall M; Faber K
    Curr Opin Chem Biol; 2007 Apr; 11(2):203-13. PubMed ID: 17353140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric alkene reduction by yeast old yellow enzymes and by a novel Zymomonas mobilis reductase.
    Müller A; Hauer B; Rosche B
    Biotechnol Bioeng; 2007 Sep; 98(1):22-9. PubMed ID: 17657768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative characterization of novel ene-reductases from cyanobacteria.
    Fu Y; Castiglione K; Weuster-Botz D
    Biotechnol Bioeng; 2013 May; 110(5):1293-301. PubMed ID: 23280373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Old yellow enzyme: reduction of nitrate esters, glycerin trinitrate, and propylene 1,2-dinitrate.
    Meah Y; Brown BJ; Chakraborty S; Massey V
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8560-5. PubMed ID: 11438708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the chemical steps of nitroalkane oxidation catalyzed by 2-nitropropane dioxygenase with solvent viscosity, pH, and substrate kinetic isotope effects.
    Francis K; Gadda G
    Biochemistry; 2006 Nov; 45(46):13889-98. PubMed ID: 17105207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity of a nitroalkane-oxidizing enzyme.
    Gadda G; Fitzpatrick PF
    Arch Biochem Biophys; 1999 Mar; 363(2):309-13. PubMed ID: 10068453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereospecific alkyne reduction: novel activity of old yellow enzymes.
    Müller A; Stürmer R; Hauer B; Rosche B
    Angew Chem Int Ed Engl; 2007; 46(18):3316-8. PubMed ID: 17387664
    [No Abstract]   [Full Text] [Related]  

  • 11. 'New uses for an Old Enzyme'--the Old Yellow Enzyme family of flavoenzymes.
    Williams RE; Bruce NC
    Microbiology (Reading); 2002 Jun; 148(Pt 6):1607-1614. PubMed ID: 12055282
    [No Abstract]   [Full Text] [Related]  

  • 12. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of a serine proximal to the C(4a) and N(5) flavin atoms for hydride transfer in choline oxidase.
    Yuan H; Gadda G
    Biochemistry; 2011 Feb; 50(5):770-9. PubMed ID: 21174412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oxidative half-reaction of Old Yellow Enzyme. The role of tyrosine 196.
    Kohli RM; Massey V
    J Biol Chem; 1998 Dec; 273(49):32763-70. PubMed ID: 9830020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae.
    Lin Y; Volkman J; Nicholas KM; Yamamoto T; Eguchi T; Nimmo SL; West AH; Cook PF
    Biochemistry; 2008 Apr; 47(13):4169-80. PubMed ID: 18321070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the nitroreductase prodrug-activating system. Crystal structures of complexes with the inhibitor dicoumarol and dinitrobenzamide prodrugs and of the enzyme active form.
    Johansson E; Parkinson GN; Denny WA; Neidle S
    J Med Chem; 2003 Sep; 46(19):4009-20. PubMed ID: 12954054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into stereospecific reduction of α, β-unsaturated carbonyl substrates by old yellow enzyme from Gluconobacter oxydans.
    Yin B; Deng J; Lim L; Yuan YA; Wei D
    Biosci Biotechnol Biochem; 2015; 79(3):410-21. PubMed ID: 25561169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of Tyr(91) and Lys(162) in general acid-base catalysis in the pigeon NADP+-dependent malic enzyme.
    Kuo CC; Lin KY; Hsu YJ; Lin SY; Lin YT; Chang GG; Chou WY
    Biochem J; 2008 May; 411(3):467-73. PubMed ID: 18248329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biochemistry of the metabolic poison propionate 3-nitronate and its conjugate acid, 3-nitropropionate.
    Francis K; Smitherman C; Nishino SF; Spain JC; Gadda G
    IUBMB Life; 2013 Sep; 65(9):759-68. PubMed ID: 23893873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydride transfer made easy in the reaction of alcohol oxidation catalyzed by flavin-dependent oxidases.
    Gadda G
    Biochemistry; 2008 Dec; 47(52):13745-53. PubMed ID: 19053234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.