BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 10995824)

  • 21. Does astrocytic glycogen benefit axon function and survival in CNS white matter during glucose deprivation?
    Ransom BR; Fern R
    Glia; 1997 Sep; 21(1):134-41. PubMed ID: 9298856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism of Glycogen in Brain White Matter.
    Brown AM; Rich LR; Ransom BR
    Adv Neurobiol; 2019; 23():187-207. PubMed ID: 31667810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity.
    Matsui T; Omuro H; Liu YF; Soya M; Shima T; McEwen BS; Soya H
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6358-6363. PubMed ID: 28515312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitric oxide stimulates cGMP formation in rat optic nerve axons, providing a specific marker of axon viability.
    Garthwaite G; Goodwin DA; Garthwaite J
    Eur J Neurosci; 1999 Dec; 11(12):4367-72. PubMed ID: 10594663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Astrocyte glycogen and brain energy metabolism.
    Brown AM; Ransom BR
    Glia; 2007 Sep; 55(12):1263-1271. PubMed ID: 17659525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Axon function persists during anoxia in mammalian white matter.
    Tekkök SB; Brown AM; Ransom BR
    J Cereb Blood Flow Metab; 2003 Nov; 23(11):1340-7. PubMed ID: 14600441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of glucose and lactate as substrates during NMDA-induced activation of hippocampal slices.
    Chih CP; He J; Sly TS; Roberts EL
    Brain Res; 2001 Mar; 893(1-2):143-54. PubMed ID: 11223002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lactate transport in insulin-secreting beta-cells: contrast between rat islets and HIT-T15 insulinoma cells.
    Best L; Trebilcock R; Tomlinson S
    Mol Cell Endocrinol; 1992 Jul; 86(1-2):49-56. PubMed ID: 1324857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Norepinephrine control of ventromedial hypothalamic nucleus glucoregulatory neurotransmitter expression in the female rat: Role of monocarboxylate transporter function.
    Hasan Mahmood ASM; Mandal SK; Bheemanapally K; Ibrahim MMH; Briski KP
    Mol Cell Neurosci; 2019 Mar; 95():51-58. PubMed ID: 30660767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte-neuron lactate-shuttle hypothesis.
    Erlichman JS; Hewitt A; Damon TL; Hart M; Kurascz J; Li A; Leiter JC
    J Neurosci; 2008 May; 28(19):4888-96. PubMed ID: 18463242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycolysis prevents anoxia-induced synaptic transmission damage in rat hippocampal slices.
    Tian GF; Baker AJ
    J Neurophysiol; 2000 Apr; 83(4):1830-9. PubMed ID: 10758095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Action potential conduction and sodium channel content in the optic nerve of the myelin-deficient rat.
    Utzschneider DA; Thio C; Sontheimer H; Ritchie JM; Waxman SG; Kocsis JD
    Proc Biol Sci; 1993 Dec; 254(1341):245-50. PubMed ID: 8108457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Axonal L-type Ca2+ channels and anoxic injury in rat CNS white matter.
    Brown AM; Westenbroek RE; Catterall WA; Ransom BR
    J Neurophysiol; 2001 Feb; 85(2):900-11. PubMed ID: 11160521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient Oxygen/Glucose Deprivation Causes a Delayed Loss of Mitochondria and Increases Spontaneous Calcium Signaling in Astrocytic Processes.
    O'Donnell JC; Jackson JG; Robinson MB
    J Neurosci; 2016 Jul; 36(27):7109-27. PubMed ID: 27383588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. β₂-adrenergic receptors protect axons during energetic stress but do not influence basal glio-axonal lactate shuttling in mouse white matter.
    Laureys G; Valentino M; Demol F; Zammit C; Muscat R; Cambron M; Kooijman R; De Keyser J
    Neuroscience; 2014 Sep; 277():367-74. PubMed ID: 25064060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calpain-dependent neurofilament breakdown in anoxic and ischemic rat central axons.
    Stys PK; Jiang Q
    Neurosci Lett; 2002 Aug; 328(2):150-4. PubMed ID: 12133577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endogenous monocarboxylates sustain hippocampal synaptic function and morphological integrity during energy deprivation.
    Izumi Y; Benz AM; Katsuki H; Zorumski CF
    J Neurosci; 1997 Dec; 17(24):9448-57. PubMed ID: 9391000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. β1-adrenoceptor-stimulated lactate production in cultured astrocytes is predominantly glycogen-independent.
    Jiang X; Challiss J; Glynn P
    Biochem Pharmacol; 2020 Jul; 177():114035. PubMed ID: 32413424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endurance and Brain Glycogen: A Clue Toward Understanding Central Fatigue.
    Matsui T; Soya M; Soya H
    Adv Neurobiol; 2019; 23():331-346. PubMed ID: 31667814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of ischaemic damage to central white matter axons: a quantitative histological analysis using rat optic nerve.
    Garthwaite G; Brown G; Batchelor AM; Goodwin DA; Garthwaite J
    Neuroscience; 1999; 94(4):1219-30. PubMed ID: 10625062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.