These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 10995860)
1. Short-term synaptic plasticity contributes to the temporal filtering of electrosensory information. Fortune ES; Rose GJ J Neurosci; 2000 Sep; 20(18):7122-30. PubMed ID: 10995860 [TBL] [Abstract][Full Text] [Related]
2. Frequency-dependent PSP depression contributes to low-pass temporal filtering in Eigenmannia. Rose GJ; Fortune ES J Neurosci; 1999 Sep; 19(17):7629-39. PubMed ID: 10460268 [TBL] [Abstract][Full Text] [Related]
3. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter. Bastian J J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621 [TBL] [Abstract][Full Text] [Related]
4. Short-term synaptic plasticity as a temporal filter. Fortune ES; Rose GJ Trends Neurosci; 2001 Jul; 24(7):381-5. PubMed ID: 11410267 [TBL] [Abstract][Full Text] [Related]
5. Plasticity in an electrosensory system. III. Contrasting properties of spatially segregated dendritic inputs. Bastian J J Neurophysiol; 1998 Apr; 79(4):1839-57. PubMed ID: 9535952 [TBL] [Abstract][Full Text] [Related]
6. Short-term depression, temporal summation, and onset inhibition shape interval tuning in midbrain neurons. Baker CA; Carlson BA J Neurosci; 2014 Oct; 34(43):14272-87. PubMed ID: 25339741 [TBL] [Abstract][Full Text] [Related]
7. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior. Carlson BA J Neurosci; 2009 Jul; 29(30):9417-28. PubMed ID: 19641105 [TBL] [Abstract][Full Text] [Related]
8. A role for short-term synaptic facilitation and depression in the processing of intensity information in the auditory brain stem. MacLeod KM; Horiuchi TK; Carr CE J Neurophysiol; 2007 Apr; 97(4):2863-74. PubMed ID: 17251365 [TBL] [Abstract][Full Text] [Related]
9. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia. Ramcharitar JU; Tan EW; Fortune ES J Neurophysiol; 2006 Nov; 96(5):2319-26. PubMed ID: 16790600 [TBL] [Abstract][Full Text] [Related]
10. Dynamically interacting processes underlie synaptic plasticity in a feedback pathway. Oswald AM; Lewis JE; Maler L J Neurophysiol; 2002 May; 87(5):2450-63. PubMed ID: 11976382 [TBL] [Abstract][Full Text] [Related]
11. Role of GABAA-Mediated Inhibition and Functional Assortment of Synapses onto Individual Layer 4 Neurons in Regulating Plasticity Expression in Visual Cortex. Saez I; Friedlander MJ PLoS One; 2016; 11(2):e0147642. PubMed ID: 26841221 [TBL] [Abstract][Full Text] [Related]
12. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study. Jeftinija S; Urban L J Neurophysiol; 1994 Jan; 71(1):216-28. PubMed ID: 7908954 [TBL] [Abstract][Full Text] [Related]
13. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish. Xu Z; Payne JR; Nelson ME J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311 [TBL] [Abstract][Full Text] [Related]
14. Net interaction between different forms of short-term synaptic plasticity and slow-IPSPs in the hippocampus and auditory cortex. Buonomano DV; Merzenich MM J Neurophysiol; 1998 Oct; 80(4):1765-74. PubMed ID: 9772237 [TBL] [Abstract][Full Text] [Related]
15. Temporal filtering properties of ampullary electrosensory neurons in the torus semicircularis of Eigenmannia: evolutionary and computational implications. Fortune ES; Rose GJ Brain Behav Evol; 1997; 49(6):312-23. PubMed ID: 9167857 [TBL] [Abstract][Full Text] [Related]
16. Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales. Mondal Y; Pena RFO; Rotstein HG J Comput Neurosci; 2022 Nov; 50(4):395-429. PubMed ID: 35869381 [TBL] [Abstract][Full Text] [Related]
17. Stimulus selectivity is enhanced by voltage-dependent conductances in combination-sensitive neurons. Carlson BA; Kawasaki M J Neurophysiol; 2006 Dec; 96(6):3362-77. PubMed ID: 17005607 [TBL] [Abstract][Full Text] [Related]
18. Frequency dependence of synaptic transmission in nucleus of the solitary tract in vitro. Miles R J Neurophysiol; 1986 May; 55(5):1076-90. PubMed ID: 3012009 [TBL] [Abstract][Full Text] [Related]
19. Passive and active membrane properties contribute to the temporal filtering properties of midbrain neurons in vivo. Fortune ES; Rose GJ J Neurosci; 1997 May; 17(10):3815-25. PubMed ID: 9133400 [TBL] [Abstract][Full Text] [Related]
20. Synaptic plasticity can produce and enhance direction selectivity. Carver S; Roth E; Cowan NJ; Fortune ES PLoS Comput Biol; 2008 Feb; 4(2):e32. PubMed ID: 18282087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]