BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10996260)

  • 1. HPLC analysis of the seasonal and diurnal variation of iridoids in cultivars of Antirrhinum majus.
    Drøhse Høgedal B ; Mølgaard P
    Biochem Syst Ecol; 2000 Dec; 28(10):949-962. PubMed ID: 10996260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The distribution of two major Iridoids in different organs of Antirrhinum majus L. at selected stages of development.
    Beninger CW; Cloutier RR; Monteiro MA; Grodzinski B
    J Chem Ecol; 2007 Apr; 33(4):731-47. PubMed ID: 17334922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of antirrhinoside distribution in the organs of two related Plantaginaceae species with different reproductive strategies.
    Beninger CW; Cloutier RR; Grodzinski B
    J Chem Ecol; 2009 Nov; 35(11):1363-72. PubMed ID: 19949840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The iridoid glucoside, antirrhinoside, from Antirrhinum majus L. has differential effects on two generalist insect herbivores.
    Beninger CW; Cloutier RR; Grodzinski B
    J Chem Ecol; 2008 May; 34(5):591-600. PubMed ID: 18414950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new iridoid diglucoside from Antirrhinum siculum.
    Tomassini L; Serafini M; Ventrone A; Nicoletti M; Cometa MF; Ragusa S
    Nat Prod Res; 2017 Jul; 31(14):1594-1597. PubMed ID: 28278685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halohydrins and polyols derived from antirrhinoside: structural revisions of muralioside and epimuralioside.
    Franzyk H; Jensen SR; Thale Z; Olsen CE
    J Nat Prod; 1999 Feb; 62(2):275-8. PubMed ID: 10075758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-glucosidase inhibitory constituents of Linaria kurdica subsp. eriocalyx.
    Aydoğdu I; Zihnioğlu F; Karayildirim T; Gülcemal D; Alankuş-Calişkan O; Bedir E
    Nat Prod Commun; 2010 Jun; 5(6):841-4. PubMed ID: 20614804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using flowering times and leaf numbers to model the phases of photoperiod sensitivity in Antirrhinum majus L.
    Adams SR; Munir M; Valdés VM; Langton FA; Jackson SD
    Ann Bot; 2003 Nov; 92(5):689-96. PubMed ID: 14500328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iridoids of Chemotaxonomy Relevance, a New Antirrhinoside Ester and Other Constituents from Kickxia spuria subsp. integrifolia (Brot.) R.Fern.
    Venditti A; Frezza C; Serafini I; Ciccòla A; Sciubba F; Serafini M; Bianco A
    Chem Biodivers; 2018 Feb; 15(2):. PubMed ID: 29239523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guided isolation of new iridoid glucosides from Anarrhinum pubescens by high-performance thin-layer chromatography-acetylcholinesterase assay.
    Mahran E; Morlock GE; Keusgen M
    J Chromatogr A; 2020 Jan; 1609():460438. PubMed ID: 31447207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New iridoid glycosides from
    Mahran E; Hosny M; El-Hela A; Boroujerdi A
    Nat Prod Res; 2019 Nov; 33(21):3057-3064. PubMed ID: 30468078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of light intensity on flowering time and plant quality of Antirrhinum majus L. cultivar Chimes White.
    Munir M; Jamil M; Baloch JU; Khattak KR
    J Zhejiang Univ Sci; 2004 Apr; 5(4):400-5. PubMed ID: 14994427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of the iridoid glucoside antirrhinoside into 3-azabicyclo[3.3.0]octane building blocks.
    Franzyk H; Frederiksen SM; Jensen SR
    J Nat Prod; 2000 May; 63(5):592-5. PubMed ID: 10843565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes.
    Preston JC; Hileman LC
    Plant J; 2010 May; 62(4):704-12. PubMed ID: 20202170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Evaluation of
    Saqallah FG; Hamed WM; Talib WH
    Sci Pharm; 2018 Oct; 86(4):. PubMed ID: 30301270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on distribution and dynamic accumulation of catalpol and total iridoid in fresh Rehmannia glutinosa].
    Ji XQ; Sun P; Qi JJ; Liao DQ; Li XE
    Zhongguo Zhong Yao Za Zhi; 2014 Feb; 39(3):466-70. PubMed ID: 24946549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases.
    Tholl D; Kish CM; Orlova I; Sherman D; Gershenzon J; Pichersky E; Dudareva N
    Plant Cell; 2004 Apr; 16(4):977-92. PubMed ID: 15031409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal variability of Chelidonium majus L. secondary metabolites content and antioxidant activity.
    Jakovljevic ZD; Stankovic SM; Topuzovic DM
    EXCLI J; 2013; 12():260-8. PubMed ID: 27047313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenological modifications in plants by various edaphic factors.
    Wielgolaski FE
    Int J Biometeorol; 2001 Nov; 45(4):196-202. PubMed ID: 11769320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of Prior Learning Experience on Pollinator Choice: An Experiment Using Bumblebees on Two Wild Floral Types of Antirrhinum majus.
    Jaworski CC; Andalo C; Raynaud C; Simon V; Thébaud C; Chave J
    PLoS One; 2015; 10(8):e0130225. PubMed ID: 26263186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.