These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10996365)

  • 1. Cyclitols as cryoprotectants for spinach and chickpea thylakoids.
    Orthen B; Popp M
    Environ Exp Bot; 2000 Oct; 44(2):125-132. PubMed ID: 10996365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The physiological importance of accumulation of cyclitols in Viscum album L.
    Richter A; Popp M
    New Phytol; 1992 Jul; 121(3):431-438. PubMed ID: 33874155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional role of polyhydroxy compounds on protein structure and thermal stability studied by circular dichroism spectroscopy.
    Ortbauer M; Popp M
    Plant Physiol Biochem; 2008 Apr; 46(4):428-34. PubMed ID: 18343146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of glycinebetaine in the protection of spinach thylakoids against freezing stress.
    Coughlan SJ; Heber U
    Planta; 1982 Nov; 156(1):62-9. PubMed ID: 24272216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of freezing on spinach leaf mitochondria and thylakoids in situ and in vitro.
    Thebud R; Santarius KA
    Plant Physiol; 1981 Nov; 68(5):1156-60. PubMed ID: 16662067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High concentrations of the compatible solute glycinebetaine destabilize model membranes under stress conditions.
    Hincha DK
    Cryobiology; 2006 Aug; 53(1):58-68. PubMed ID: 16696965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of in situ freezing damage of the photosynthetic apparatus by freezing in vitro of thylakoids suspended in complex media.
    Grafflage S; Krause GH
    Planta; 1986 May; 168(1):67-76. PubMed ID: 24233737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryopreservation of spinach chloroplast membranes by low-molecular-weight carbohydrates. I. Evidence for cryoprotection by a noncolligative-type mechanism.
    Santarius KA; Bauer J
    Cryobiology; 1983 Feb; 20(1):83-9. PubMed ID: 6831913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The solute permeability of thylakoid membranes is reduced by low concentrations of trehalose as a co-solute.
    Bakaltcheva I; Williams WP; Schmitt JM; Hincha DK
    Biochim Biophys Acta; 1994 Jan; 1189(1):38-44. PubMed ID: 8305457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of quebrachitol, a transportable photosynthate, in Litchi chinensis.
    Wu ZC; Zhang JQ; Zhao JT; Li JG; Huang XM; Wang HC
    J Exp Bot; 2018 Mar; 69(7):1649-1661. PubMed ID: 29281092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of proline, serine, and leucine with isolated spinach thylakoids: solute loading during freezing is not related to membrane fluidity.
    Popova AV; Schmitt JM; Hincha DK
    Cryobiology; 1998 Aug; 37(1):92-9. PubMed ID: 9698434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclitols protect glutamine synthetase and malate dehydrogenase against heat induced deactivation and thermal denaturation.
    Jaindl M; Popp M
    Biochem Biophys Res Commun; 2006 Jun; 345(2):761-5. PubMed ID: 16701563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of freezing on thylakoid membranes in the presence of organic acids.
    Santarius KA
    Plant Physiol; 1971 Aug; 48(2):156-62. PubMed ID: 16657754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freezing injury in cold-acclimated and unhardened spinach leaves : I. Photosynthetic reactions of thylakoids isolated from frost-damaged leaves.
    Klosson RJ; Krause GH
    Planta; 1981 Apr; 151(4):339-46. PubMed ID: 24301976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thylakoid membrane stability in drought-tolerant and drought-sensitive plants.
    Schwab KB; Heber U
    Planta; 1984 Jan; 161(1):37-45. PubMed ID: 24253553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective cryoprotection of thylakoid membranes by ATP.
    Santarius KA
    Planta; 1984 Nov; 161(6):555-61. PubMed ID: 24253926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors contributing to inactivation of isolated thylakoid membranes during freezing in the presence of variable amounts of glucose and NaCl.
    Santarius KA; Giersch C
    Biophys J; 1984 Aug; 46(2):129-39. PubMed ID: 6478028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryopreservation of spinach chloroplast membranes by low-molecular-weight carbohydrates. II. Discrimination between colligative and noncolligative protection.
    Santarius KA; Giersch C
    Cryobiology; 1983 Feb; 20(1):90-9. PubMed ID: 6831914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteins from frost-hardy leaves protect thylakoids against mechanical freeze-thaw damage in vitro.
    Hincha DK; Heber U; Schmitt JM
    Planta; 1990 Feb; 180(3):416-9. PubMed ID: 24202022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the sesquiterpene lactone tetraesters thapsigargicin and thapsigargin, from roots of Thapsia garganica L., on isolated spinach chloroplasts.
    Santarius KA; Falsone G; Haddad H
    Toxicon; 1987; 25(4):389-99. PubMed ID: 3617076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.