These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10996468)

  • 1. D-aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release.
    Wolosker H; D'Aniello A; Snyder SH
    Neuroscience; 2000; 100(1):183-9. PubMed ID: 10996468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-aspartate localizations imply neuronal and neuroendocrine roles.
    Schell MJ; Cooper OB; Snyder SH
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):2013-8. PubMed ID: 9050896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization, transport, and uptake of D-aspartate in the rat adrenal and pituitary glands.
    Lee JA; Long Z; Nimura N; Iwatsubo T; Imai K; Homma H
    Arch Biochem Biophys; 2001 Jan; 385(2):242-9. PubMed ID: 11368004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of NAAG by an enzyme-mediated process in rat central nervous system neurons and glia.
    Gehl LM; Saab OH; Bzdega T; Wroblewska B; Neale JH
    J Neurochem; 2004 Aug; 90(4):989-97. PubMed ID: 15287905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological characterization of swelling-induced D-[3H]aspartate release from primary astrocyte cultures.
    Rutledge EM; Aschner M; Kimelberg HK
    Am J Physiol; 1998 Jun; 274(6):C1511-20. PubMed ID: 9696693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogeny of Rxt1, a vesicular "orphan" Na(+)/Cl(-)-dependent transporter, in the rat.
    Masson J; Gaspar P; Aïdouni Z; Ezan P; Giros B; Hamon M; El Mestikawy S
    Neuroscience; 2000; 96(3):627-37. PubMed ID: 10717444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putative acidic amino acid transmitters in the cerebellum. I. Depolarization-induced release.
    Levi G; Gordon RD; Gallo V; Wilkin GP; Balàzs R
    Brain Res; 1982 May; 239(2):425-45. PubMed ID: 6124302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presynaptic alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate [3H]d-aspartate release from rat frontal cortex in vitro.
    Rousseau SJ; Jones IW; Pullar IA; Wonnacott S
    Neuropharmacology; 2005 Jul; 49(1):59-72. PubMed ID: 15992581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryonic development and postnatal changes in free D-aspartate and D-serine in the human prefrontal cortex.
    Hashimoto A; Kumashiro S; Nishikawa T; Oka T; Takahashi K; Mito T; Takashima S; Doi N; Mizutani Y; Yamazaki T
    J Neurochem; 1993 Jul; 61(1):348-51. PubMed ID: 8515283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arecoline inhibits catecholamine release from perfused rat adrenal gland.
    Lim DY; Kim IS
    Acta Pharmacol Sin; 2006 Jan; 27(1):71-9. PubMed ID: 16364213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-aspartate oxidase localisation in pituitary and pineal glands of the female pig.
    Yamamoto A; Tanaka H; Ishida T; Horiike K
    J Neuroendocrinol; 2010 Nov; 22(11):1165-72. PubMed ID: 20819121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free D-aspartate in mammals.
    Furuchi T; Homma H
    Biol Pharm Bull; 2005 Sep; 28(9):1566-70. PubMed ID: 16141517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-aspartate but not the D form is secreted through microvesicle-mediated exocytosis and is sequestered through Na+-dependent transporter in rat pinealocytes.
    Yatsushiro S; Yamada H; Kozaki S; Kumon H; Michibata H; Yamamoto A; Moriyama Y
    J Neurochem; 1997 Jul; 69(1):340-7. PubMed ID: 9202328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release of D-[3H]aspartic acid from the rat striatum. Effect of veratridine-evoked depolarization, fronto-parietal cortex ablation, and striatal lesions with kainic acid.
    Arqueros L; Abarca J; Bustos G
    Biochem Pharmacol; 1985 Apr; 34(8):1217-24. PubMed ID: 2581579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct and continuous detection of ATP secretion from primary monolayer cultures of bovine adrenal chromaffin cells.
    White TD; Bourke JE; Livett BG
    J Neurochem; 1987 Oct; 49(4):1266-73. PubMed ID: 3114430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The muscarinic modulation of [3H]D-aspartate efflux and [Ca2+]i levels in rat cerebellar granule cells.
    Beani L; Antonelli T; Tomasini C; Bianchi C
    Brain Res; 1997 Aug; 765(1):91-100. PubMed ID: 9310398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nicotinic modulation of [(3)H]D-aspartate outflow from cultured cerebellar granule cells.
    Bianchi C; Tomasini MC; Antonelli T; Marani L; Beani L
    Synapse; 2000 Jun; 36(4):307-13. PubMed ID: 10819908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of K(+)-evoked [3H]D-aspartate release and neuronal calcium influx by verapamil, diltiazem and dextromethorphan: evidence for non-L/non-N voltage-sensitive calcium channels.
    Mangano TJ; Patel J; Salama AI; Keith RA
    Eur J Pharmacol; 1991 Jan; 192(1):9-17. PubMed ID: 1645678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of D-aspartic acid and N-methyl-D-aspartic acid in the regulation of prolactin release.
    D'Aniello G; Tolino A; D'Aniello A; Errico F; Fisher GH; Di Fiore MM
    Endocrinology; 2000 Oct; 141(10):3862-70. PubMed ID: 11014243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting effects of D- and L-(E)-4-(3-phosphono-2-propenyl)piperazine-2-carboxylic acid as anticonvulsants and as inhibitors of potassium-evoked increases in hippocampal extracellular glutamate and aspartate levels in freely moving rats.
    Millan MH; Chapman AG; Meldrum BS
    J Neurochem; 1994 Jan; 62(1):217-22. PubMed ID: 7903351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.