BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10996551)

  • 1. The role of the thalamus in vigilance and epileptogenic mechanisms.
    Avanzini G; Panzica F; de Curtis M
    Clin Neurophysiol; 2000 Sep; 111 Suppl 2():S19-26. PubMed ID: 10996551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thalamic regulation of epileptic spike and wave discharges.
    de Curtis M; Avanzini G
    Funct Neurol; 1994; 9(6):307-26. PubMed ID: 7789871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropeptide Y affects thalamic reticular nucleus neuronal firing and network synchronization associated with suppression of spike-wave discharges.
    Ali I; Gandrathi A; Zheng T; Morris MJ; O'Brien TJ; French C
    Epilepsia; 2018 Jul; 59(7):1444-1454. PubMed ID: 29923603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relations between cortical and thalamic cellular activities during absence seizures in rats.
    Seidenbecher T; Staak R; Pape HC
    Eur J Neurosci; 1998 Mar; 10(3):1103-12. PubMed ID: 9753178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brainstem stimulation during sleep evokes abnormal rhythmic activity in thalamic neurons in feline penicillin epilepsy.
    Szymusiak R; Shouse MN; McGinty D
    Brain Res; 1996 Mar; 713(1-2):253-60. PubMed ID: 8724998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of intralaminar thalamic nuclei to spike-and-wave-discharges during spontaneous seizures in a genetic rat model of absence epilepsy.
    Seidenbecher T; Pape HC
    Eur J Neurosci; 2001 Apr; 13(8):1537-46. PubMed ID: 11328348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thalamo-cortical mechanisms of sleep spindles and spike-wave discharges in rat model of absence epilepsy (a review).
    Sitnikova E
    Epilepsy Res; 2010 Mar; 89(1):17-26. PubMed ID: 19828296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of cortical, thalamic and midbrain reticular formation neurons in spike and wave discharges: extracellular study in feline generalized penicillin epilepsy.
    Pellegrini A; Ermani M; Testa G
    Exp Neurol; 1985 Aug; 89(2):465-78. PubMed ID: 4018213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of transient functional depression of the thalamus on spindles and on bilateral synchronous epileptic discharges of feline generalized penicillin epilepsy.
    Avoli M; Gloor P
    Epilepsia; 1981 Aug; 22(4):443-52. PubMed ID: 7262050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5-9 Hz oscillations.
    Pinault D
    J Physiol; 2003 Nov; 552(Pt 3):881-905. PubMed ID: 12923213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical versus thalamic mechanisms underlying spike and wave discharges in GAERS.
    Avanzini G; de Curtis M; Franceschetti S; Sancini G; Spreafico R
    Epilepsy Res; 1996 Dec; 26(1):37-44. PubMed ID: 8985684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles.
    Meeren HK; Veening JG; Möderscheim TA; Coenen AM; van Luijtelaar G
    Exp Neurol; 2009 May; 217(1):25-37. PubMed ID: 19416679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between low voltage-activated currents in reticular thalamic neurons in a rat model of absence epilepsy.
    Meis S; Biella G; Pape HC
    Eur J Neurosci; 1996 Oct; 8(10):2090-7. PubMed ID: 8921300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns.
    Steriade M; Amzica F; Neckelmann D; Timofeev I
    J Neurophysiol; 1998 Sep; 80(3):1456-79. PubMed ID: 9744952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epileptiform EEG activity of the centromedian thalamic nuclei in children with intractable generalized seizures of the Lennox-Gastaut syndrome.
    Velasco M; Velasco F; Alcalá H; Dávila G; Díaz-de-León AE
    Epilepsia; 1991; 32(3):310-21. PubMed ID: 1904342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis.
    Kostopoulos GK
    Clin Neurophysiol; 2000 Sep; 111 Suppl 2():S27-38. PubMed ID: 10996552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory.
    Meeren H; van Luijtelaar G; Lopes da Silva F; Coenen A
    Arch Neurol; 2005 Mar; 62(3):371-6. PubMed ID: 15767501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid?
    Leresche N; Lambert RC; Errington AC; Crunelli V
    Pflugers Arch; 2012 Jan; 463(1):201-12. PubMed ID: 21861061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.