These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 10996814)
21. Predicting the physiological performance of ectotherms in fluctuating thermal environments. Niehaus AC; Angilletta MJ; Sears MW; Franklin CE; Wilson RS J Exp Biol; 2012 Feb; 215(Pt 4):694-701. PubMed ID: 22279077 [TBL] [Abstract][Full Text] [Related]
22. Short- and long-term consequences of thermal variation in the larval environment of anurans. Niehaus AC; Wilson RS; Franklin CE J Anim Ecol; 2006 May; 75(3):686-92. PubMed ID: 16689951 [TBL] [Abstract][Full Text] [Related]
23. Metabolite profiles of striped marsh frog (Limnodynastes peronii) larvae exposed to the anti-androgenic fungicides vinclozolin and propiconazole are consistent with altered steroidogenesis and oxidative stress. Melvin SD; Leusch FDL; Carroll AR Aquat Toxicol; 2018 Jun; 199():232-239. PubMed ID: 29660695 [TBL] [Abstract][Full Text] [Related]
24. Cold-induced skin darkening does not protect amphibian larvae from UV-associated DNA damage. Hird C; Flanagan E; Franklin CE; Cramp RL J Exp Zool A Ecol Integr Physiol; 2024 Apr; 341(3):272-281. PubMed ID: 38197718 [TBL] [Abstract][Full Text] [Related]
25. Early life exposure to high temperature enhances locomotor performance without alteration in thermal ecology in different populations of Thoropa taophora tadpoles (Anura, Cycloramphidae). Carvalho JE; Gallo AC; Brasileiro CA; Schaeffer PJ J Exp Biol; 2024 Aug; 227(16):. PubMed ID: 39054944 [TBL] [Abstract][Full Text] [Related]
26. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki. Franklin CE; Davison W; Seebacher F J Exp Biol; 2007 Sep; 210(Pt 17):3068-74. PubMed ID: 17704081 [TBL] [Abstract][Full Text] [Related]
27. Thermal performance curves under daily thermal fluctuation: A study in helmeted water toad tadpoles. Bartheld JL; Artacho P; Bacigalupe L J Therm Biol; 2017 Dec; 70(Pt B):80-85. PubMed ID: 29108561 [TBL] [Abstract][Full Text] [Related]
28. Does simultaneous UV-B exposure enhance the lethal and sub-lethal effects of aquatic hypoxia on developing anuran embryos and larvae? Bernal MH; Alton LA; Cramp RL; Franklin CE J Comp Physiol B; 2011 Oct; 181(7):973-80. PubMed ID: 21541673 [TBL] [Abstract][Full Text] [Related]
29. Low temperature tolerance, cold hardening and acclimation in tadpoles of the neotropical túngara frog (Engystomops pustulosus). Vo P; Gridi-Papp M J Therm Biol; 2017 May; 66():49-55. PubMed ID: 28477909 [TBL] [Abstract][Full Text] [Related]
30. Altered bioenergetics and developmental effects in striped marsh frog (Limnodynastes peronii) tadpoles exposed to UV treated sewage. Melvin SD; Lanctôt CM; van de Merwe JP; Leusch FD Aquat Toxicol; 2016 Jun; 175():30-8. PubMed ID: 26991752 [TBL] [Abstract][Full Text] [Related]
31. Individual and mixture toxicity of pharmaceuticals naproxen, carbamazepine, and sulfamethoxazole to Australian striped marsh frog tadpoles (Limnodynastes peronii). Melvin SD; Cameron MC; Lanctôt CM J Toxicol Environ Health A; 2014; 77(6):337-45. PubMed ID: 24593146 [TBL] [Abstract][Full Text] [Related]
32. Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. Johnston IA; Temple GK J Exp Biol; 2002 Aug; 205(Pt 15):2305-22. PubMed ID: 12110664 [TBL] [Abstract][Full Text] [Related]
33. Physiological responses of ectotherms to daily temperature variation. Kern P; Cramp RL; Franklin CE J Exp Biol; 2015 Oct; 218(Pt 19):3068-76. PubMed ID: 26254318 [TBL] [Abstract][Full Text] [Related]
34. Thermal acclimation effects differ between voluntary, maximum, and critical swimming velocities in two cyprinid fishes. O'Steen S; Bennett AF Physiol Biochem Zool; 2003; 76(4):484-96. PubMed ID: 13130428 [TBL] [Abstract][Full Text] [Related]
35. The diversity and evolution of locomotor muscle properties in anurans. Astley HC J Exp Biol; 2016 Oct; 219(Pt 19):3163-3173. PubMed ID: 27707867 [TBL] [Abstract][Full Text] [Related]
36. Physiology of invasion: cane toads are constrained by thermal effects on physiological mechanisms that support locomotor performance. Seebacher F; Franklin CE J Exp Biol; 2011 May; 214(Pt 9):1437-44. PubMed ID: 21490252 [TBL] [Abstract][Full Text] [Related]
37. Thermal preference, thermal resistance, and metabolic rate of juvenile Chinese pond turtles Mauremys reevesii acclimated to different temperatures. Xu W; Dang W; Geng J; Lu HL J Therm Biol; 2015 Oct; 53():119-24. PubMed ID: 26590464 [TBL] [Abstract][Full Text] [Related]
38. The thermal plasticity of locomotor performance has diverged between northern and southern populations of the eastern newt (Notophthalmus viridescens). Mineo PM; Schaeffer PJ J Comp Physiol B; 2015 Jan; 185(1):103-10. PubMed ID: 25388211 [TBL] [Abstract][Full Text] [Related]
39. Native amphibian larvae exhibit higher upper thermal limits but lower performance than their introduced predator Gambusia affinis. Lau ETC; Leung KMY; Karraker NE J Therm Biol; 2019 Apr; 81():154-161. PubMed ID: 30975413 [TBL] [Abstract][Full Text] [Related]
40. Plastic responses to diel thermal variation in juvenile green sturgeon, Acipenser medirostris. Rodgers EM; Cocherell DE; Nguyen TX; Todgham AE; Fangue NA J Therm Biol; 2018 Aug; 76():147-155. PubMed ID: 30143289 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]