These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 10997204)

  • 1. Linking remote sensing, land cover and disease.
    Curran PJ; Atkinson PM; Foody GM; Milton EJ
    Adv Parasitol; 2000; 47():37-80. PubMed ID: 10997204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in satellite remote sensing of environmental variables for epidemiological applications.
    Goetz SJ; Prince SD; Small J
    Adv Parasitol; 2000; 47():289-307. PubMed ID: 10997210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of remote sensing and geographic information systems to predict locations of Anopheles darlingi-positive breeding sites within the Sibun River in Belize, Central America.
    Achee NL; Grieco JP; Masuoka P; Andre RG; Roberts DR; Thomas J; Briceno I; King R; Rejmankova E
    J Med Entomol; 2006 Mar; 43(2):382-92. PubMed ID: 16619625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Land cover classification from multi-temporal, multi-spectral remotely sensed imagery using patch-based recurrent neural networks.
    Sharma A; Liu X; Yang X
    Neural Netw; 2018 Sep; 105():346-355. PubMed ID: 29933156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Satellites, space, time and the African trypanosomiases.
    Rogers DJ
    Adv Parasitol; 2000; 47():129-71. PubMed ID: 10997206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal modelling for parasite transmission studies and risk assessment.
    Danson FM; Armitage RP; Marston CG
    Parasite; 2008 Sep; 15(3):463-8. PubMed ID: 18814724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote sensing and GIS integration for land cover analysis, a case study: Bozcaada Island.
    Bektas F; Goksel C
    Water Sci Technol; 2005; 51(11):239-44. PubMed ID: 16114638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of kala-azar in the endemic region of Bihar, India based on land use/land cover assessment at different scales.
    Bhunia GS; Kesari S; Chatterjee N; Kumar V; Das P
    Geospat Health; 2012 May; 6(2):177-93. PubMed ID: 22639120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between normalized difference vegetation index and malaria in a subtropical rain forest undergoing rapid anthropogenic alteration.
    Wayant NM; Maldonado D; Rojas de Arias A; Cousiño B; Goodin DG
    Geospat Health; 2010 May; 4(2):179-90. PubMed ID: 20503187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data.
    Stefani A; Dusfour I; Corrêa AP; Cruz MC; Dessay N; Galardo AK; Galardo CD; Girod R; Gomes MS; Gurgel H; Lima AC; Moreno ES; Musset L; Nacher M; Soares AC; Carme B; Roux E
    Malar J; 2013 Jun; 12():192. PubMed ID: 23758827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement.
    Neumann W; Martinuzzi S; Estes AB; Pidgeon AM; Dettki H; Ericsson G; Radeloff VC
    Mov Ecol; 2015; 3(1):8. PubMed ID: 25941571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geostatistical modelling of the malaria risk in Mozambique: effect of the spatial resolution when using remotely-sensed imagery.
    Giardina F; Franke J; Vounatsou P
    Geospat Health; 2015 Nov; 10(2):333. PubMed ID: 26618310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote sensing of tropical wetlands for malaria control in Chiapas, Mexico.
    Pope KO; Rejmankova E; Savage HM; Arredondo-Jimenez JI; Rodriguez MH; Roberts DR
    Ecol Appl; 1994 Feb; 4(1):81-90. PubMed ID: 11539870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Land cover classification with an expert system approach using Landsat ETM imagery: a case study of Trabzon.
    Kahya O; Bayram B; Reis S
    Environ Monit Assess; 2010 Jan; 160(1-4):431-8. PubMed ID: 19083107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecological characterization of a cutaneous leishmaniasis outbreak through remotely sensed land cover changes.
    Andreo V; Rosa J; Ramos K; Salomón OD
    Geospat Health; 2022 May; 17(1):. PubMed ID: 35532020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of risk prone areas of kala-azar (Visceral leishmaniasis) in parts of Bihar State, India: an RS and GIS approach.
    Sudhakar S; Srinivas T; Palit A; Kar SK; Battacharya SK
    J Vector Borne Dis; 2006 Sep; 43(3):115-22. PubMed ID: 17024860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating land cover and terrain characteristics to explain plague risks in Western Usambara Mountains, Tanzania: a geospatial approach.
    Hieronimo P; Meliyo J; Gulinck H; Kimaro DN; Mulungu LS; Kihupi NI; Msanya BM; Leirs H; Deckers JA
    Tanzan J Health Res; 2014 Jul; 16(3):207-18. PubMed ID: 26867280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Satellite detection of bird communities in tropical countryside.
    Ranganathan J; Chan KM; Daily GC
    Ecol Appl; 2007 Jul; 17(5):1499-510. PubMed ID: 17708224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stratifying land use/land cover for spatial analysis of disease ecology and risk: an example using object-based classification techniques.
    Koch DE; Mohler RL; Goodin DG
    Geospat Health; 2007 Nov; 2(1):15-28. PubMed ID: 18686252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.