These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 10997687)

  • 21. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a "glycoxidation-centric" point of view.
    Chilelli NC; Burlina S; Lapolla A
    Nutr Metab Cardiovasc Dis; 2013 Oct; 23(10):913-9. PubMed ID: 23786818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications.
    Lee TS; Saltsman KA; Ohashi H; King GL
    Proc Natl Acad Sci U S A; 1989 Jul; 86(13):5141-5. PubMed ID: 2740348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Requirement of aldose reductase for the hyperglycemic activation of protein kinase C and formation of diacylglycerol in vascular smooth muscle cells.
    Ramana KV; Friedrich B; Tammali R; West MB; Bhatnagar A; Srivastava SK
    Diabetes; 2005 Mar; 54(3):818-29. PubMed ID: 15734861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular and molecular mechanisms of vascular injury in diabetes--part I: pathways of vascular disease in diabetes.
    Madonna R; De Caterina R
    Vascul Pharmacol; 2011; 54(3-6):68-74. PubMed ID: 21453786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of nuclear factor-kappaB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase.
    Ramana KV; Friedrich B; Srivastava S; Bhatnagar A; Srivastava SK
    Diabetes; 2004 Nov; 53(11):2910-20. PubMed ID: 15504972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hyperglycemia and cardiovascular disease.
    Duckworth WC
    Curr Atheroscler Rep; 2001 Sep; 3(5):383-91. PubMed ID: 11487449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy.
    Hammes HP; Du X; Edelstein D; Taguchi T; Matsumura T; Ju Q; Lin J; Bierhaus A; Nawroth P; Hannak D; Neumaier M; Bergfeld R; Giardino I; Brownlee M
    Nat Med; 2003 Mar; 9(3):294-9. PubMed ID: 12592403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diabetic late complications: will aldose reductase inhibitors or inhibitors of advanced glycosylation endproduct formation hold promise?
    Boel E; Selmer J; Flodgaard HJ; Jensen T
    J Diabetes Complications; 1995; 9(2):104-29. PubMed ID: 7599349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vitamin B1 blocks damage caused by hyperglycemia.
    Obrenovich ME; Monnier VM
    Sci Aging Knowledge Environ; 2003 Mar; 2003(10):PE6. PubMed ID: 12844520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells.
    Du X; Matsumura T; Edelstein D; Rossetti L; Zsengellér Z; Szabó C; Brownlee M
    J Clin Invest; 2003 Oct; 112(7):1049-57. PubMed ID: 14523042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diabetic vascular dysfunction: links to glucose-induced reductive stress and VEGF.
    Tilton RG
    Microsc Res Tech; 2002 Jun; 57(5):390-407. PubMed ID: 12112445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Negative consequences of glycation.
    Brownlee M
    Metabolism; 2000 Feb; 49(2 Suppl 1):9-13. PubMed ID: 10693913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Osteomeles schwerinae extracts inhibits the binding to receptors of advanced glycation end products and TGF-β1 expression in mesangial cells under diabetic conditions.
    Kim YS; Jung DH; Lee IS; Pyun BJ; Kim JS
    Phytomedicine; 2016 Apr; 23(4):388-97. PubMed ID: 27002409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications.
    Wautier JL; Wautier MP; Schmidt AM; Anderson GM; Hori O; Zoukourian C; Capron L; Chappey O; Yan SD; Brett J
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7742-6. PubMed ID: 8052654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of the postprandial state on nontraditional risk factors.
    Lebovitz HE
    Am J Cardiol; 2001 Sep; 88(6A):20H-5H. PubMed ID: 11576522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular targets of diabetic cardiovascular complications.
    Ahmad FK; He Z; King GL
    Curr Drug Targets; 2005 Jun; 6(4):487-94. PubMed ID: 16026267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of disease: Pathway-selective insulin resistance and microvascular complications of diabetes.
    Groop PH; Forsblom C; Thomas MC
    Nat Clin Pract Endocrinol Metab; 2005 Dec; 1(2):100-10. PubMed ID: 16929378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical and molecular mechanisms in the development of diabetic vascular complications.
    King GL; Kunisaki M; Nishio Y; Inoguchi T; Shiba T; Xia P
    Diabetes; 1996 Jul; 45 Suppl 3():S105-8. PubMed ID: 8674872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Genetic susceptibility to microangiopathy development in Type 1 diabetes mellitus].
    Corrêa-Giannella ML; Vieira SM
    Arq Bras Endocrinol Metabol; 2008 Mar; 52(2):375-86. PubMed ID: 18438549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential.
    Faria A; Persaud SJ
    Pharmacol Ther; 2017 Apr; 172():50-62. PubMed ID: 27916650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.