These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 10997777)
1. Interstitial colocalization of two cervid satellite DNAs involved in the genesis of the Indian muntjac karyotype. Li YC; Lee C; Sanoudou D; Hseu TH; Li SY; Lin CC Chromosome Res; 2000; 8(5):363-73. PubMed ID: 10997777 [TBL] [Abstract][Full Text] [Related]
2. Karyotypic evolution of a novel cervid satellite DNA family isolated by microdissection from the Indian muntjac Y-chromosome. Li YC; Cheng YM; Hsieh LJ; Ryder OA; Yang F; Liao SJ; Hsiao KM; Tsai FJ; Tsai CH; Lin CC Chromosoma; 2005 May; 114(1):28-38. PubMed ID: 15827746 [TBL] [Abstract][Full Text] [Related]
3. Cloning, characterization and physical mapping of three cervid satellite DNA families in the genome of the Formosan muntjac (Muntiacus reevesi micrurus). Lin CC; Chiang PY; Hsieh LJ; Liao SJ; Chao MC; Li YC Cytogenet Genome Res; 2004; 105(1):100-6. PubMed ID: 15218264 [TBL] [Abstract][Full Text] [Related]
4. Zoo-fluorescence in situ hybridization analysis of human and Indian muntjac karyotypes (Muntiacus muntjak vaginalis) reveals satellite DNA clusters at the margins of conserved syntenic segments. Frönicke L; Scherthan H Chromosome Res; 1997 Jun; 5(4):254-61. PubMed ID: 9244453 [TBL] [Abstract][Full Text] [Related]
5. Interstitial localization of telomeric DNA sequences in the Indian muntjac chromosomes: further evidence for tandem chromosome fusions in the karyotypic evolution of the Asian muntjacs. Lee C; Sasi R; Lin CC Cytogenet Cell Genet; 1993; 63(3):156-9. PubMed ID: 8485991 [TBL] [Abstract][Full Text] [Related]
6. New evidence for tandem chromosome fusions in the karyotypic evolution of Asian muntjacs. Lin CC; Sasi R; Fan YS; Chen ZQ Chromosoma; 1991 Oct; 101(1):19-24. PubMed ID: 1769270 [TBL] [Abstract][Full Text] [Related]
7. A reappraisal of the tandem fusion theory of karyotype evolution in Indian muntjac using chromosome painting. Yang F; O'Brien PC; Wienberg J; Ferguson-Smith MA Chromosome Res; 1997 Apr; 5(2):109-17. PubMed ID: 9146914 [TBL] [Abstract][Full Text] [Related]
8. A tandemly repetitive, centromeric DNA sequence from the Canadian woodland caribou (Rangifer tarandus caribou): its conservation and evolution in several deer species. Lee C; Ritchie DB; Lin CC Chromosome Res; 1994 Jul; 2(4):293-306. PubMed ID: 7921645 [TBL] [Abstract][Full Text] [Related]
9. Characterization of ancestral chromosome fusion points in the Indian muntjac deer. Hartmann N; Scherthan H Chromosoma; 2004 Feb; 112(5):213-20. PubMed ID: 14648169 [TBL] [Abstract][Full Text] [Related]
10. Direct visualization of the genomic distribution and organization of two cervid centromeric satellite DNA families. Li YC; Lee C; Hseu TH; Li SY; Lin CC Cytogenet Cell Genet; 2000; 89(3-4):192-8. PubMed ID: 10965121 [TBL] [Abstract][Full Text] [Related]
11. Complex genomic organization of Indian muntjac centromeric DNA. Cheng YM; Li TS; Hsieh LJ; Hsu PC; Li YC; Lin CC Chromosome Res; 2009; 17(8):1051-62. PubMed ID: 19921447 [TBL] [Abstract][Full Text] [Related]
12. Comparative sequence analyses reveal sites of ancestral chromosomal fusions in the Indian muntjac genome. Tsipouri V; Schueler MG; Hu S; ; Dutra A; Pak E; Riethman H; Green ED Genome Biol; 2008 Oct; 9(10):R155. PubMed ID: 18957082 [TBL] [Abstract][Full Text] [Related]
13. Isolation and identification of a novel satellite DNA family highly conserved in several Cervidae species. Li YC; Lee C; Chang WS; Li SY; Lin CC Chromosoma; 2002 Sep; 111(3):176-83. PubMed ID: 12355207 [TBL] [Abstract][Full Text] [Related]
14. CENP-A associated complex satellite DNA in the kinetochore of the Indian muntjac. Vafa O; Shelby RD; Sullivan KF Chromosoma; 1999 Nov; 108(6):367-74. PubMed ID: 10591996 [TBL] [Abstract][Full Text] [Related]
15. Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Yang F; O'Brien PC; Wienberg J; Neitzel H; Lin CC; Ferguson-Smith MA Chromosoma; 1997 Jun; 106(1):37-43. PubMed ID: 9169585 [TBL] [Abstract][Full Text] [Related]
16. Localization and characterization of recombinant DNA clones derived from the highly repetitive DNA sequences in the Indian muntjac cells: their presence in the Chinese muntjac. Yu LC; Lowensteiner D; Wong EF; Sawada I; Mazrimas J; Schmid C Chromosoma; 1986; 93(6):521-8. PubMed ID: 3015505 [TBL] [Abstract][Full Text] [Related]
17. Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chi JX; Huang L; Nie W; Wang J; Su B; Yang F Chromosoma; 2005 Aug; 114(3):167-72. PubMed ID: 16010580 [TBL] [Abstract][Full Text] [Related]
18. Localization of cloned, repetitive DNA sequences in deer species and its implications for maintenance of gene territory. Scherthan H; Arnason U; Lima-de-Faria A Hereditas; 1990; 112(1):13-20. PubMed ID: 2361878 [TBL] [Abstract][Full Text] [Related]
19. Segmental homology among cattle (Bos taurus), Indian muntjac (Muntiacus muntjak vaginalis), and Chinese muntjac (M. reevesi) karyotypes. Frönicke L; Chowdhary BP; Scherthan H Cytogenet Cell Genet; 1997; 77(3-4):223-7. PubMed ID: 9284921 [TBL] [Abstract][Full Text] [Related]
20. Comparative gene mapping in cattle, Indian muntjac, and Chinese muntjac by fluorescence in situ hybridization. Murmann AE; Mincheva A; Scheuermann MO; Gautier M; Yang F; Buitkamp J; Strissel PL; Strick R; Rowley JD; Lichter P Genetica; 2008 Nov; 134(3):345-51. PubMed ID: 18283540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]