BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 10998052)

  • 21. Hydrogen bonding, solvent exchange, and coupled proton and electron transfer in the oxidation and reduction of redox-active tyrosine Y(Z) in Mn-depleted core complexes of photosystem II.
    Diner BA; Force DA; Randall DW; Britt RD
    Biochemistry; 1998 Dec; 37(51):17931-43. PubMed ID: 9922161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 4-methoxybenzoate O-demethylase from Pseudomonas putida. A new type of monooxygenase system.
    Bernhardt FH; Pachowsky H; Staudinger H
    Eur J Biochem; 1975 Sep; 57(1):241-56. PubMed ID: 240720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Secondary isotope effects and structure-reactivity correlations in the dopamine beta-monooxygenase reaction: evidence for a chemical mechanism.
    Miller SM; Klinman JP
    Biochemistry; 1985 Apr; 24(9):2114-27. PubMed ID: 3995006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of O2 activation by cytochrome P450cam studied by isotope effects and transient state kinetics.
    Purdy MM; Koo LS; de Montellano PR; Klinman JP
    Biochemistry; 2006 Dec; 45(51):15793-806. PubMed ID: 17176102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A transient intermediate in the reaction catalyzed by (S)-mandelate dehydrogenase from Pseudomonas putida.
    Dewanti AR; Mitra B
    Biochemistry; 2003 Nov; 42(44):12893-901. PubMed ID: 14596603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mössbauer studies on the active Fe ... [2Fe-2S] site of putidamonooxin, its electron transport and dioxygen activation mechanism.
    Bill E; Bernhardt FH; Trautwein AX
    Eur J Biochem; 1981 Dec; 121(1):39-46. PubMed ID: 6276173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase.
    Kantz A; Chin F; Nallamothu N; Nguyen T; Gassner GT
    Arch Biochem Biophys; 2005 Oct; 442(1):102-16. PubMed ID: 16140257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the C-terminal region of the B component of Methylosinus trichosporium OB3b methane monooxygenase in the regulation of oxygen activation.
    Zhang J; Lipscomb JD
    Biochemistry; 2006 Feb; 45(5):1459-69. PubMed ID: 16445288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intrinsic primary, secondary, and solvent kinetic isotope effects on the reductive half-reaction of D-amino acid oxidase: evidence against a concerted mechanism.
    Denu JM; Fitzpatrick PF
    Biochemistry; 1994 Apr; 33(13):4001-7. PubMed ID: 7908225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidation in H2O and D2O of 6-ethyl-5H-dibenz(c,e)azepine and 1-methylnicotinamide by aldehyde oxidase from rabbit liver.
    Thomas HG; Silverman DN
    Arch Biochem Biophys; 1985 Sep; 241(2):649-55. PubMed ID: 2994572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic mechanism and nucleotide specificity of NADH peroxidase.
    Stoll VS; Blanchard JS
    Arch Biochem Biophys; 1988 Feb; 260(2):752-62. PubMed ID: 3124762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rate-determining steps in phenacetin oxidations by human cytochrome P450 1A2 and selected mutants.
    Yun CH; Miller GP; Guengerich FP
    Biochemistry; 2000 Sep; 39(37):11319-29. PubMed ID: 10985777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Further evidence for multiple pathways in soluble methane-monooxygenase-catalysed oxidations from the measurement of deuterium kinetic isotope effects.
    Wilkins PC; Dalton H; Samuel CJ; Green J
    Eur J Biochem; 1994 Dec; 226(2):555-60. PubMed ID: 8001570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of urocanase as studied by deuterium isotope effects and labeling patterns.
    Egan RM; Matherly LH; Phillips AT
    Biochemistry; 1981 Jan; 20(1):132-7. PubMed ID: 6110440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic deuterium isotope effects for 7-alkoxycoumarin O-dealkylation reactions catalyzed by human cytochromes P450 and in liver microsomes. Rate-limiting C-H bond breaking in cytochrome P450 1A2 substrate oxidation.
    Kim KH; Isin EM; Yun CH; Kim DH; Guengerich FP
    FEBS J; 2006 May; 273(10):2223-31. PubMed ID: 16649998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An electron-spin-resonance study on the redox-active centers of the 4-methoxybenzoate monooxygenase from Pseudomonas putida.
    Twilfer H; Bernhardt FH; Gersonde K
    Eur J Biochem; 1981 Oct; 119(3):595-602. PubMed ID: 6273164
    [No Abstract]   [Full Text] [Related]  

  • 38. Kinetics of reduction of putidamonooxin by NADH-putidamonooxin oxidoreductase, sodium dithionite and superoxide radicals.
    Bernhardt FH; Kuthan H
    Eur J Biochem; 1983 Jan; 130(1):99-103. PubMed ID: 6297900
    [No Abstract]   [Full Text] [Related]  

  • 39. Galactose oxidase as a model for reactivity at a copper superoxide center.
    Humphreys KJ; Mirica LM; Wang Y; Klinman JP
    J Am Chem Soc; 2009 Apr; 131(13):4657-63. PubMed ID: 19290629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rate-Determining Attack on Substrate Precedes Rieske Cluster Oxidation during Cis-Dihydroxylation by Benzoate Dioxygenase.
    Rivard BS; Rogers MS; Marell DJ; Neibergall MB; Chakrabarty S; Cramer CJ; Lipscomb JD
    Biochemistry; 2015 Aug; 54(30):4652-64. PubMed ID: 26154836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.