BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 10998070)

  • 21. Solution structure of an antifreeze protein CfAFP-501 from Choristoneura fumiferana.
    Li C; Guo X; Jia Z; Xia B; Jin C
    J Biomol NMR; 2005 Jul; 32(3):251-6. PubMed ID: 16132825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp.
    Jung W; Campbell RL; Gwak Y; Kim JI; Davies PL; Jin E
    PLoS One; 2016; 11(4):e0154056. PubMed ID: 27097164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cold survival in freeze-intolerant insects: the structure and function of beta-helical antifreeze proteins.
    Graether SP; Sykes BD
    Eur J Biochem; 2004 Aug; 271(16):3285-96. PubMed ID: 15291806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antifreeze activity enhancement by site directed mutagenesis on an antifreeze protein from the beetle Rhagium mordax.
    Friis DS; Kristiansen E; von Solms N; Ramløv H
    FEBS Lett; 2014 May; 588(9):1767-72. PubMed ID: 24681101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of a novel β-helix antifreeze protein from the desert beetle Anatolica polita.
    Mao X; Liu Z; Ma J; Pang H; Zhang F
    Cryobiology; 2011 Apr; 62(2):91-9. PubMed ID: 21232534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A theoretical model of a plant antifreeze protein from Lolium perenne.
    Kuiper MJ; Davies PL; Walker VK
    Biophys J; 2001 Dec; 81(6):3560-5. PubMed ID: 11721016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of the ice-binding face of antifreeze protein from Tenebrio molitor.
    Marshall CB; Daley ME; Graham LA; Sykes BD; Davies PL
    FEBS Lett; 2002 Oct; 529(2-3):261-7. PubMed ID: 12372611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of Hyperactive Antifreeze Protein from Phylogenetically Distant Beetles Questions Its Evolutionary Origin.
    Arai T; Yamauchi A; Miura A; Kondo H; Nishimiya Y; Sasaki YC; Tsuda S
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Insight into the Adsorption of Spruce Budworm Antifreeze Protein to an Ice Surface: A Clathrate-Mediated Recognition Mechanism.
    Chakraborty S; Jana B
    Langmuir; 2017 Jul; 33(28):7202-7214. PubMed ID: 28650167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the activity of a beta-helical antifreeze protein by the engineered addition of coils.
    Marshall CB; Daley ME; Sykes BD; Davies PL
    Biochemistry; 2004 Sep; 43(37):11637-46. PubMed ID: 15362848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antifreeze protein from shorthorn sculpin: identification of the ice-binding surface.
    Baardsnes J; Jelokhani-Niaraki M; Kondejewski LH; Kuiper MJ; Kay CM; Hodges RS; Davies PL
    Protein Sci; 2001 Dec; 10(12):2566-76. PubMed ID: 11714925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct visualization of spruce budworm antifreeze protein interacting with ice crystals: basal plane affinity confers hyperactivity.
    Pertaya N; Marshall CB; Celik Y; Davies PL; Braslavsky I
    Biophys J; 2008 Jul; 95(1):333-41. PubMed ID: 18339740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2.
    Muryoi N; Sato M; Kaneko S; Kawahara H; Obata H; Yaish MW; Griffith M; Glick BR
    J Bacteriol; 2004 Sep; 186(17):5661-71. PubMed ID: 15317770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical study of interaction of winter flounder antifreeze protein with ice.
    Jorov A; Zhorov BS; Yang DS
    Protein Sci; 2004 Jun; 13(6):1524-37. PubMed ID: 15152087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.
    Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL
    Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.