These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10998174)

  • 1. Control of methionine biosynthesis in Escherichia coli by proteolysis.
    Biran D; Gur E; Gollan L; Ron EZ
    Mol Microbiol; 2000 Sep; 37(6):1436-43. PubMed ID: 10998174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the active site of homoserine trans-succinylase.
    Rosen R; Becher D; Büttner K; Biran D; Hecker M; Ron EZ
    FEBS Lett; 2004 Nov; 577(3):386-92. PubMed ID: 15556615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperatures.
    Gur E; Biran D; Gazit E; Ron EZ
    Mol Microbiol; 2002 Dec; 46(5):1391-7. PubMed ID: 12453224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilized homoserine o-succinyltransferases (MetA) or L-methionine partially recovers the growth defect in Escherichia coli lacking ATP-dependent proteases or the DnaK chaperone.
    Mordukhova EA; Kim D; Pan JG
    BMC Microbiol; 2013 Jul; 13():179. PubMed ID: 23898868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of deregulation of methionine biosynthesis on methionine excretion in Escherichia coli.
    Usuda Y; Kurahashi O
    Appl Environ Microbiol; 2005 Jun; 71(6):3228-34. PubMed ID: 15933025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tools for the study of protein quality control systems: use of truncated homoserine trans-succinylase as a model substrate for ATP-dependent proteolysis in Escherichia coli.
    Mizrahi I; Biran D; Gur E; Ron EZ
    J Microbiol Methods; 2007 Jul; 70(1):82-5. PubMed ID: 17490766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Escherichia coli metA-encoded homoserine transsuccinylase.
    Born TL; Blanchard JS
    Biochemistry; 1999 Oct; 38(43):14416-23. PubMed ID: 10572016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat shock-dependent transcriptional activation of the metA gene of Escherichia coli.
    Biran D; Brot N; Weissbach H; Ron EZ
    J Bacteriol; 1995 Mar; 177(5):1374-9. PubMed ID: 7868613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of homoserine O-succinyltransferase for efficient production of L-methionine in engineered Escherichia coli.
    Tang XL; Chen LJ; Du XY; Zhang B; Liu ZQ; Zheng YG
    J Biotechnol; 2020 Feb; 309():53-58. PubMed ID: 31891734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single amino acid change is responsible for evolution of acyltransferase specificity in bacterial methionine biosynthesis.
    Zubieta C; Arkus KA; Cahoon RE; Jez JM
    J Biol Chem; 2008 Mar; 283(12):7561-7. PubMed ID: 18216013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homoserine O-acetyltransferase, involved in the Leptospira meyeri methionine biosynthetic pathway, is not feedback inhibited.
    Bourhy P; Martel A; Margarita D; Saint Girons I; Belfaiza J
    J Bacteriol; 1997 Jul; 179(13):4396-8. PubMed ID: 9209059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory region of the metA gene of Escherichia coli K-12.
    Michaeli S; Mevarech M; Ron EZ
    J Bacteriol; 1984 Dec; 160(3):1158-62. PubMed ID: 6094503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of Escherichia coli to elevated temperatures: the metA gene product is a heat shock protein.
    Ron EZ; Alajem S; Biran D; Grossman N
    Antonie Van Leeuwenhoek; 1990 Oct; 58(3):169-74. PubMed ID: 2256677
    [No Abstract]   [Full Text] [Related]  

  • 14. Growth rate of Escherichia coli at elevated temperatures: limitation by methionine.
    Ron EZ; Davis BD
    J Bacteriol; 1971 Aug; 107(2):391-6. PubMed ID: 4939758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved thermostability and acetic acid tolerance of Escherichia coli via directed evolution of homoserine o-succinyltransferase.
    Mordukhova EA; Lee HS; Pan JG
    Appl Environ Microbiol; 2008 Dec; 74(24):7660-8. PubMed ID: 18978085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional dissection of a cell-division inhibitor, SulA, of Escherichia coli and its negative regulation by Lon.
    Higashitani A; Ishii Y; Kato Y; Koriuchi K
    Mol Gen Genet; 1997 Apr; 254(4):351-7. PubMed ID: 9180687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequence of the metA gene encoding homoserine trans-succinylase in Escherichia coli.
    Duclos B; Cortay JC; Bleicher F; Ron EZ; Richaud C; Saint Girons I; Cozzone AJ
    Nucleic Acids Res; 1989 Apr; 17(7):2856. PubMed ID: 2654885
    [No Abstract]   [Full Text] [Related]  

  • 18. Rational Engineering of Homoserine O-Succinyltransferase from
    Sagong HY; Lee D; Kim IK; Kim KJ
    J Agric Food Chem; 2022 Feb; 70(5):1571-1578. PubMed ID: 35084172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyphosphate kinase protects Salmonella enterica from weak organic acid stress.
    Price-Carter M; Fazzio TG; Vallbona EI; Roth JR
    J Bacteriol; 2005 May; 187(9):3088-99. PubMed ID: 15838036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase.
    Ron EZ; Shani M
    J Bacteriol; 1971 Aug; 107(2):397-400. PubMed ID: 4939759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.