BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 10998237)

  • 1. Mutagenesis and kinetic studies of a plant cysteine proteinase with an unusual arrangement of acidic amino acids in and around the active site.
    Carter CE; Marriage H; Goodenough PW
    Biochemistry; 2000 Sep; 39(36):11005-13. PubMed ID: 10998237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid kinetic studies and structural determination of a cysteine proteinase mutant imply that residue 158 in caricain has a major effect upon the ability of the active site histidine to protonate a dipyridyl probe.
    Katerelos NA; Goodenough PW
    Biochemistry; 1996 Nov; 35(47):14763-72. PubMed ID: 8942638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis.
    Topham CM; Salih E; Frazao C; Kowlessur D; Overington JP; Thomas M; Brocklehurst SM; Patel M; Thomas EW; Brocklehurst K
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):79-92. PubMed ID: 1741760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the active site residues in the nsP2 proteinase of Sindbis virus.
    Strauss EG; De Groot RJ; Levinson R; Strauss JH
    Virology; 1992 Dec; 191(2):932-40. PubMed ID: 1448929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enhancing of a cysteine proteinase activity at acidic pH by protein engineering, the role of glutamic 50 in the enzyme mechanism of caricain.
    Ikeuchi Y; Katerelos NA; Goodenough PW
    FEBS Lett; 1998 Oct; 437(1-2):91-6. PubMed ID: 9804178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An unequivocal example of cysteine proteinase activity affected by multiple electrostatic interactions.
    Taylor MA; Baker KC; Connerton IF; Cummings NJ; Harris GW; Henderson IM; Jones ST; Pickersgill RW; Sumner IG; Warwicker J
    Protein Eng; 1994 Oct; 7(10):1267-76. PubMed ID: 7855143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases.
    Brömme D; Bonneau PR; Purisima E; Lachance P; Hajnik S; Thomas DY; Storer AC
    Biochemistry; 1996 Apr; 35(13):3970-9. PubMed ID: 8672429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus.
    Baker SC; Yokomori K; Dong S; Carlisle R; Gorbalenya AE; Koonin EV; Lai MM
    J Virol; 1993 Oct; 67(10):6056-63. PubMed ID: 8396668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the electrostatic charge at the active site of foot-and-mouth-disease-virus leader proteinase, an unusual papain-like enzyme.
    Schlick P; Kronovetr J; Hampoelz B; Skern T
    Biochem J; 2002 May; 363(Pt 3):493-501. PubMed ID: 11964149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of proteolytic activity of a thermostable papain-like protease by structure-based rational design.
    Dutta S; Dattagupta JK; Biswas S
    PLoS One; 2013; 8(5):e62619. PubMed ID: 23671614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autocatalytic processing of pro-papaya proteinase IV is prevented by crowding of the active-site cleft.
    Baker KC; Taylor MA; Cummings NJ; Tuñón MA; Worboys KA; Connerton IF
    Protein Eng; 1996 Jun; 9(6):525-9. PubMed ID: 8862553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of catalytic bases in the active site of Escherichia coli methylglyoxal synthase: cloning, expression, and functional characterization of conserved aspartic acid residues.
    Saadat D; Harrison DH
    Biochemistry; 1998 Jul; 37(28):10074-86. PubMed ID: 9665712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role for an invariant aspartic acid in hypoxanthine phosphoribosyltransferases is examined using saturation mutagenesis, functional analysis, and X-ray crystallography.
    Canyuk B; Focia PJ; Eakin AE
    Biochemistry; 2001 Mar; 40(9):2754-65. PubMed ID: 11258886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning and functional characterization of crustapain: a distinct cysteine proteinase with unique substrate specificity from northern shrimp Pandalus borealis.
    Aoki H; Ahsan MN; Watabe S
    J Biochem; 2003 Jun; 133(6):799-810. PubMed ID: 12869537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and expression of the cathepsin F-like cysteine protease gene in Escherichia coli and its characterization.
    Joo HS; Koo KB; Park KI; Bae SH; Yun JW; Chang CS; Choi JW
    J Microbiol; 2007 Apr; 45(2):158-67. PubMed ID: 17483802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology modeling and mutagenesis analyses of Plasmodium falciparum falcipain 2A: implications for rational drug design.
    Goh LL; Sim TS
    Biochem Biophys Res Commun; 2004 Oct; 323(2):565-72. PubMed ID: 15369788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. His...Asp catalytic dyad of ribonuclease A: structure and function of the wild-type, D121N, and D121A enzymes.
    Schultz LW; Quirk DJ; Raines RT
    Biochemistry; 1998 Jun; 37(25):8886-98. PubMed ID: 9636030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.
    Puthan Veetil V; Raj H; Quax WJ; Janssen DB; Poelarends GJ
    FEBS J; 2009 Jun; 276(11):2994-3007. PubMed ID: 19490103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autocatalytic activation of human legumain at aspartic acid residues.
    Halfon S; Patel S; Vega F; Zurawski S; Zurawski G
    FEBS Lett; 1998 Oct; 438(1-2):114-8. PubMed ID: 9821970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foot-and-mouth disease virus leader proteinase: a papain-like enzyme requiring an acidic environment in the active site.
    Kronovetr J; Skern T
    FEBS Lett; 2002 Sep; 528(1-3):58-62. PubMed ID: 12297280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.