BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 10998237)

  • 21. The cysteine proteinases of the pineapple plant.
    Rowan AD; Buttle DJ; Barrett AJ
    Biochem J; 1990 Mar; 266(3):869-75. PubMed ID: 2327970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Asparagine 23 and aspartate 305 are essential residues in the active site of UDP-N-acetylglucosamine enolpyruvyl transferase from Enterobacter cloacae.
    Samland AK; Etezady-Esfarjani T; Amrhein N; Macheroux P
    Biochemistry; 2001 Feb; 40(6):1550-9. PubMed ID: 11327813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EndoS from Streptococcus pyogenes is hydrolyzed by the cysteine proteinase SpeB and requires glutamic acid 235 and tryptophans for IgG glycan-hydrolyzing activity.
    Allhorn M; Olsén A; Collin M
    BMC Microbiol; 2008 Jan; 8():3. PubMed ID: 18182097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular cloning and sequence analysis of a cDNA encoding a cysteine proteinase inhibitor from Sorghum bicolor seedlings.
    Li Z; Sommer A; Dingermann T; Noe CR
    Mol Gen Genet; 1996 Jun; 251(4):499-502. PubMed ID: 8709954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of chymopapain M the late-eluted chymopapain deduced by comparative modelling techniques and active-centre characteristics determined by pH-dependent kinetics of catalysis and reactions with time-dependent inhibitors: the Cys-25/His-159 ion-pair is insufficient for catalytic competence in both chymopapain M and papain.
    Thomas MP; Topham CM; Kowlessur D; Mellor GW; Thomas EW; Whitford D; Brocklehurst K
    Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):805-20. PubMed ID: 8010964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutagenesis and crystallographic studies of the catalytic residues of the papain family protease bleomycin hydrolase: new insights into active-site structure.
    O'Farrell PA; Joshua-Tor L
    Biochem J; 2007 Jan; 401(2):421-8. PubMed ID: 17007609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of conserved aspartate and glutamate residues in the catalysis and substrate binding of maize starch synthase.
    Nichols DJ; Keeling PL; Spalding M; Guan H
    Biochemistry; 2000 Jul; 39(26):7820-5. PubMed ID: 10869188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proregion of Acanthoscelides obtectus cysteine proteinase: a novel peptide with enhanced selectivity toward endogenous enzymes.
    Silva FB; Monteiro AC; Del Sarto RP; Marra BM; Dias SC; Figueira EL; Oliveira GR; Rocha TL; Souza DS; da Silva MC; Franco OL; Grossi-de-Sa MF
    Peptides; 2007 Jun; 28(6):1292-8. PubMed ID: 17485144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural basis of the unusual stability and substrate specificity of ervatamin C, a plant cysteine protease from Ervatamia coronaria.
    Thakurta PG; Biswas S; Chakrabarti C; Sundd M; Jagannadham MV; Dattagupta JK
    Biochemistry; 2004 Feb; 43(6):1532-40. PubMed ID: 14769029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24-kDa proteinase.
    Margis R; Pinck L
    Virology; 1992 Oct; 190(2):884-8. PubMed ID: 1519363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. C-Terminal extension of a plant cysteine protease modulates proteolytic activity through a partial inhibitory mechanism.
    Dutta S; Choudhury D; Dattagupta JK; Biswas S
    FEBS J; 2011 Sep; 278(17):3012-24. PubMed ID: 21707922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic and spectroscopic studies of Tritrichomonas foetus low-molecular weight phosphotyrosyl phosphatase. Hydrogen bond networks and electrostatic effects.
    Thomas CL; McKinnon E; Granger BL; Harms E; Van Etten RL
    Biochemistry; 2002 Dec; 41(52):15601-9. PubMed ID: 12501188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of active-site residues of the adenovirus endopeptidase.
    Rancourt C; Tihanyi K; Bourbonniere M; Weber JM
    Proc Natl Acad Sci U S A; 1994 Feb; 91(3):844-7. PubMed ID: 8302855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Importance of the second binding loop and the C-terminal end of cystatin B (stefin B) for inhibition of cysteine proteinases.
    Pol E; Björk I
    Biochemistry; 1999 Aug; 38(32):10519-26. PubMed ID: 10441148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases.
    Martinez M; Diaz-Mendoza M; Carrillo L; Diaz I
    FEBS Lett; 2007 Jun; 581(16):2914-8. PubMed ID: 17543305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A thermostable cysteine protease precursor from a tropical plant contains an unusual C-terminal propeptide: cDNA cloning, sequence comparison and molecular modeling studies.
    Ghosh R; Dattagupta JK; Biswas S
    Biochem Biophys Res Commun; 2007 Nov; 362(4):965-70. PubMed ID: 17767923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Herpesvirus proteinase: site-directed mutagenesis used to study maturational, release, and inactivation cleavage sites of precursor and to identify a possible catalytic site serine and histidine.
    Welch AR; McNally LM; Hall MR; Gibson W
    J Virol; 1993 Dec; 67(12):7360-72. PubMed ID: 8230459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-directed mutagenesis of active site residues of phosphite dehydrogenase.
    Woodyer R; Wheatley JL; Relyea HA; Rimkus S; van der Donk WA
    Biochemistry; 2005 Mar; 44(12):4765-74. PubMed ID: 15779903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms.
    Matagne A; Bolle L; El Mahyaoui R; Baeyens-Volant D; Azarkan M
    Phytochemistry; 2017 Jun; 138():29-51. PubMed ID: 28238440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.