These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 10998241)
1. Self-assembly of heme A and heme B in a designed four-helix bundle: implications for a cytochrome c oxidase maquette. Gibney BR; Isogai Y; Rabanal F; Reddy KS; Grosset AM; Moser CC; Dutton PL Biochemistry; 2000 Sep; 39(36):11041-9. PubMed ID: 10998241 [TBL] [Abstract][Full Text] [Related]
2. Effect of four helix bundle topology on heme binding and redox properties. Gibney BR; Rabanal F; Reddy KS; Dutton PL Biochemistry; 1998 Mar; 37(13):4635-43. PubMed ID: 9521784 [TBL] [Abstract][Full Text] [Related]
4. Heme redox potential control in de novo designed four-alpha-helix bundle proteins. Shifman JM; Gibney BR; Sharp RE; Dutton PL Biochemistry; 2000 Dec; 39(48):14813-21. PubMed ID: 11101297 [TBL] [Abstract][Full Text] [Related]
5. Histidine placement in de novo-designed heme proteins. Gibney BR; Dutton PL Protein Sci; 1999 Sep; 8(9):1888-98. PubMed ID: 10493590 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the roles of the heme a side chains in cytochrome c oxidase using designed heme proteins. Zhuang J; Reddi AR; Wang Z; Khodaverdian B; Hegg EL; Gibney BR Biochemistry; 2006 Oct; 45(41):12530-8. PubMed ID: 17029408 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic investigation into the mechanisms of proton-coupled electron transfer events in heme protein maquettes. Reddi AR; Reedy CJ; Mui S; Gibney BR Biochemistry; 2007 Jan; 46(1):291-305. PubMed ID: 17198400 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase. Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR Inorg Chem; 2006 Jun; 45(12):4685-94. PubMed ID: 16749832 [TBL] [Abstract][Full Text] [Related]
9. Proof of principle in a de novo designed protein maquette: an allosterically regulated, charge-activated conformational switch in a tetra-alpha-helix bundle. Grosset AM; Gibney BR; Rabanal F; Moser CC; Dutton PL Biochemistry; 2001 May; 40(18):5474-87. PubMed ID: 11331012 [TBL] [Abstract][Full Text] [Related]
10. Resonance Raman and optical spectroscopic monitoring of heme a redox states in cytochrome c oxidase during potentiometric titrations. Harmon PA; Hendler RW; Levin IW Biochemistry; 1994 Jan; 33(3):699-707. PubMed ID: 8292597 [TBL] [Abstract][Full Text] [Related]
11. The HP-1 maquette: from an apoprotein structure to a structured hemoprotein designed to promote redox-coupled proton exchange. Huang SS; Koder RL; Lewis M; Wand AJ; Dutton PL Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5536-41. PubMed ID: 15056758 [TBL] [Abstract][Full Text] [Related]
12. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase. Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794 [TBL] [Abstract][Full Text] [Related]
13. Structural and electronic properties of the heme cofactors in a multi-heme synthetic cytochrome. Kalsbeck WA; Robertson DE; Pandey RK; Smith KM; Dutton PL; Bocian DF Biochemistry; 1996 Mar; 35(11):3429-38. PubMed ID: 8639493 [TBL] [Abstract][Full Text] [Related]
14. Design and synthesis of de novo cytochromes c. Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636 [TBL] [Abstract][Full Text] [Related]
15. A low-redox potential heme in the dinuclear center of bacterial nitric oxide reductase: implications for the evolution of energy-conserving heme-copper oxidases. Grönberg KL; Roldán MD; Prior L; Butland G; Cheesman MR; Richardson DJ; Spiro S; Thomson AJ; Watmough NJ Biochemistry; 1999 Oct; 38(42):13780-6. PubMed ID: 10529222 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic redox behavior of the heme centers of cbb3 heme-copper oxygen reductase from Bradyrhizobium japonicum. Veríssimo AF; Sousa FL; Baptista AM; Teixeira M; Pereira MM Biochemistry; 2007 Nov; 46(46):13245-53. PubMed ID: 17963363 [TBL] [Abstract][Full Text] [Related]
17. Functionalized de novo designed proteins: mechanism of proton coupling to oxidation/reduction in heme protein maquettes. Shifman JM; Moser CC; Kalsbeck WA; Bocian DF; Dutton PL Biochemistry; 1998 Nov; 37(47):16815-27. PubMed ID: 9843452 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamic and biophysical characterization of cytochrome P450 BioI from Bacillus subtilis. Lawson RJ; Leys D; Sutcliffe MJ; Kemp CA; Cheesman MR; Smith SJ; Clarkson J; Smith WE; Haq I; Perkins JB; Munro AW Biochemistry; 2004 Oct; 43(39):12410-26. PubMed ID: 15449931 [TBL] [Abstract][Full Text] [Related]
19. EPR studies of cytochrome aa3 from Sulfolobus acidocaldarius. Evidence for a binuclear center in archaebacterial terminal oxidase. Anemüller S; Bill E; Schäfer G; Trautwein AX; Teixeira M Eur J Biochem; 1992 Nov; 210(1):133-8. PubMed ID: 1332857 [TBL] [Abstract][Full Text] [Related]
20. Design of a five-coordinate heme protein maquette: a spectroscopic model of deoxymyoglobin. Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR Inorg Chem; 2004 Dec; 43(26):8218-20. PubMed ID: 15606161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]