BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 10998241)

  • 1. Self-assembly of heme A and heme B in a designed four-helix bundle: implications for a cytochrome c oxidase maquette.
    Gibney BR; Isogai Y; Rabanal F; Reddy KS; Grosset AM; Moser CC; Dutton PL
    Biochemistry; 2000 Sep; 39(36):11041-9. PubMed ID: 10998241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of four helix bundle topology on heme binding and redox properties.
    Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Mar; 37(13):4635-43. PubMed ID: 9521784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic modulation of heme properties in heme protein maquettes.
    Gibney BR; Huang SS; Skalicky JJ; Fuentes EJ; Wand AJ; Dutton PL
    Biochemistry; 2001 Sep; 40(35):10550-61. PubMed ID: 11523997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heme redox potential control in de novo designed four-alpha-helix bundle proteins.
    Shifman JM; Gibney BR; Sharp RE; Dutton PL
    Biochemistry; 2000 Dec; 39(48):14813-21. PubMed ID: 11101297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histidine placement in de novo-designed heme proteins.
    Gibney BR; Dutton PL
    Protein Sci; 1999 Sep; 8(9):1888-98. PubMed ID: 10493590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the roles of the heme a side chains in cytochrome c oxidase using designed heme proteins.
    Zhuang J; Reddi AR; Wang Z; Khodaverdian B; Hegg EL; Gibney BR
    Biochemistry; 2006 Oct; 45(41):12530-8. PubMed ID: 17029408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic investigation into the mechanisms of proton-coupled electron transfer events in heme protein maquettes.
    Reddi AR; Reedy CJ; Mui S; Gibney BR
    Biochemistry; 2007 Jan; 46(1):291-305. PubMed ID: 17198400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase.
    Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR
    Inorg Chem; 2006 Jun; 45(12):4685-94. PubMed ID: 16749832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proof of principle in a de novo designed protein maquette: an allosterically regulated, charge-activated conformational switch in a tetra-alpha-helix bundle.
    Grosset AM; Gibney BR; Rabanal F; Moser CC; Dutton PL
    Biochemistry; 2001 May; 40(18):5474-87. PubMed ID: 11331012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman and optical spectroscopic monitoring of heme a redox states in cytochrome c oxidase during potentiometric titrations.
    Harmon PA; Hendler RW; Levin IW
    Biochemistry; 1994 Jan; 33(3):699-707. PubMed ID: 8292597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The HP-1 maquette: from an apoprotein structure to a structured hemoprotein designed to promote redox-coupled proton exchange.
    Huang SS; Koder RL; Lewis M; Wand AJ; Dutton PL
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5536-41. PubMed ID: 15056758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and electronic properties of the heme cofactors in a multi-heme synthetic cytochrome.
    Kalsbeck WA; Robertson DE; Pandey RK; Smith KM; Dutton PL; Bocian DF
    Biochemistry; 1996 Mar; 35(11):3429-38. PubMed ID: 8639493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and synthesis of de novo cytochromes c.
    Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y
    Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low-redox potential heme in the dinuclear center of bacterial nitric oxide reductase: implications for the evolution of energy-conserving heme-copper oxidases.
    Grönberg KL; Roldán MD; Prior L; Butland G; Cheesman MR; Richardson DJ; Spiro S; Thomson AJ; Watmough NJ
    Biochemistry; 1999 Oct; 38(42):13780-6. PubMed ID: 10529222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic redox behavior of the heme centers of cbb3 heme-copper oxygen reductase from Bradyrhizobium japonicum.
    Veríssimo AF; Sousa FL; Baptista AM; Teixeira M; Pereira MM
    Biochemistry; 2007 Nov; 46(46):13245-53. PubMed ID: 17963363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized de novo designed proteins: mechanism of proton coupling to oxidation/reduction in heme protein maquettes.
    Shifman JM; Moser CC; Kalsbeck WA; Bocian DF; Dutton PL
    Biochemistry; 1998 Nov; 37(47):16815-27. PubMed ID: 9843452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic and biophysical characterization of cytochrome P450 BioI from Bacillus subtilis.
    Lawson RJ; Leys D; Sutcliffe MJ; Kemp CA; Cheesman MR; Smith SJ; Clarkson J; Smith WE; Haq I; Perkins JB; Munro AW
    Biochemistry; 2004 Oct; 43(39):12410-26. PubMed ID: 15449931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EPR studies of cytochrome aa3 from Sulfolobus acidocaldarius. Evidence for a binuclear center in archaebacterial terminal oxidase.
    Anemüller S; Bill E; Schäfer G; Trautwein AX; Teixeira M
    Eur J Biochem; 1992 Nov; 210(1):133-8. PubMed ID: 1332857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a five-coordinate heme protein maquette: a spectroscopic model of deoxymyoglobin.
    Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR
    Inorg Chem; 2004 Dec; 43(26):8218-20. PubMed ID: 15606161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.