These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 10998245)

  • 1. Operator DNA sequence variation enhances high affinity binding by hinge helix mutants of lactose repressor protein.
    Falcon CM; Matthews KS
    Biochemistry; 2000 Sep; 39(36):11074-83. PubMed ID: 10998245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered disulfide linking the hinge regions within lactose repressor dimer increases operator affinity, decreases sequence selectivity, and alters allostery.
    Falcon CM; Matthews KS
    Biochemistry; 2001 Dec; 40(51):15650-9. PubMed ID: 11747440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine insertion in the hinge region of lactose repressor protein alters DNA binding.
    Falcon CM; Matthews KS
    J Biol Chem; 1999 Oct; 274(43):30849-57. PubMed ID: 10521477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of the asymmetrical contact between lac repressor and lac operator DNA.
    Rastinejad F; Artz P; Lu P
    J Mol Biol; 1993 Oct; 233(3):389-99. PubMed ID: 8411152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The solution structure of Lac repressor headpiece 62 complexed to a symmetrical lac operator.
    Spronk CA; Bonvin AM; Radha PK; Melacini G; Boelens R; Kaptein R
    Structure; 1999 Dec; 7(12):1483-92. PubMed ID: 10647179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing.
    Xu Y; Sun Y; Huysveld N; Gigot D; Glansdorff N; Charlier D
    J Mol Biol; 2003 Feb; 326(2):353-69. PubMed ID: 12559906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexibility in the inducer binding region is crucial for allostery in the Escherichia coli lactose repressor.
    Xu J; Matthews KS
    Biochemistry; 2009 Jun; 48(22):4988-98. PubMed ID: 19368358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic analysis of Lac repressor bound to natural operator O1.
    Bell CE; Lewis M
    J Mol Biol; 2001 Oct; 312(5):921-6. PubMed ID: 11580238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lac repressor-operator interaction: N-terminal peptide backbone 1H and 15N chemical shifts upon complex formation with DNA.
    Artz PG; Valentine KG; Opella SJ; Lu P
    J Mol Recognit; 1996; 9(1):13-22. PubMed ID: 8723315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli lac repressor-lac operator interaction and the influence of allosteric effectors.
    Horton N; Lewis M; Lu P
    J Mol Biol; 1997 Jan; 265(1):1-7. PubMed ID: 8995519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative and anticooperative effects in binding of the first and second plasmid Osym operators to a LacI tetramer: evidence for contributions of non-operator DNA binding by wrapping and looping.
    Levandoski MM; Tsodikov OV; Frank DE; Melcher SE; Saecker RM; Record MT
    J Mol Biol; 1996 Aug; 260(5):697-717. PubMed ID: 8709149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbation from a distance: mutations that alter LacI function through long-range effects.
    Swint-Kruse L; Zhan H; Fairbanks BM; Maheshwari A; Matthews KS
    Biochemistry; 2003 Dec; 42(47):14004-16. PubMed ID: 14636069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactose repressor protein: functional properties and structure.
    Matthews KS; Nichols JC
    Prog Nucleic Acid Res Mol Biol; 1998; 58():127-64. PubMed ID: 9308365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine-tuning function: correlation of hinge domain interactions with functional distinctions between LacI and PurR.
    Swint-Kruse L; Larson C; Pettitt BM; Matthews KS
    Protein Sci; 2002 Apr; 11(4):778-94. PubMed ID: 11910022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of E. coli cytidine repressor interactions with DNA: distinct modes of binding to different operators suggests a role in differential gene regulation.
    Tretyachenko-Ladokhina V; Ross JB; Senear DF
    J Mol Biol; 2002 Feb; 316(3):531-46. PubMed ID: 11866516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A closer view of the conformation of the Lac repressor bound to operator.
    Bell CE; Lewis M
    Nat Struct Biol; 2000 Mar; 7(3):209-14. PubMed ID: 10700279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contacts between Tet repressor and tet operator revealed by new recognition specificities of single amino acid replacement mutants.
    Baumeister R; Helbl V; Hillen W
    J Mol Biol; 1992 Aug; 226(4):1257-70. PubMed ID: 1518055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hinge-helix formation and DNA bending in various lac repressor-operator complexes.
    Spronk CA; Folkers GE; Noordman AM; Wechselberger R; van den Brink N; Boelens R; Kaptein R
    EMBO J; 1999 Nov; 18(22):6472-80. PubMed ID: 10562559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.