These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 10998303)

  • 1. Effect of Light on the Electrokinetic Behavior of TiO(2) Particles in Contact with Cr(VI) Aqueous Solutions.
    García Rodenas LA ; Weisz AD; Magaz GE; Blesa MA
    J Colloid Interface Sci; 2000 Oct; 230(1):181-185. PubMed ID: 10998303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption characteristics and separation of Cr(III) and Cr(VI) on hydrous titanium(IV) oxide.
    Tel H; Altaş Y; Taner MS
    J Hazard Mater; 2004 Aug; 112(3):225-31. PubMed ID: 15302443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J; Chen C; Zhu X; Wang X
    J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms.
    Deng S; Bai R
    Water Res; 2004 May; 38(9):2423-31. PubMed ID: 15142804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids.
    Kantar C; Cetin Z; Demiray H
    J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes.
    Brasil JL; Ev RR; Milcharek CD; Martins LC; Pavan FA; dos Santos AA; Dias SL; Dupont J; Zapata Noreña CP; Lima EC
    J Hazard Mater; 2006 May; 133(1-3):143-53. PubMed ID: 16297543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cr(VI) concentration from batch contact/tank leaching and column percolation test using fly ash with additives.
    Chai JC; Onitsuk K; Hayashi S
    J Hazard Mater; 2009 Jul; 166(1):67-73. PubMed ID: 19097697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of Hexavalent Chromium from Aqueous Solution by Using Activated Red Mud.
    Pradhan J; Das SN; Thakur RS
    J Colloid Interface Sci; 1999 Sep; 217(1):137-141. PubMed ID: 10441420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis.
    Yang JK; Lee SM
    Chemosphere; 2006 Jun; 63(10):1677-84. PubMed ID: 16325231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Batch removal of chromium(VI) from aqueous solution by Turkish brown coals.
    Arslan G; Pehlivan E
    Bioresour Technol; 2007 Nov; 98(15):2836-45. PubMed ID: 17113283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface complexation of catechol to metal oxides: an ATR-FTIR, adsorption, and dissolution study.
    Gulley-Stahl H; Hogan PA; Schmidt WL; Wall SJ; Buhrlage A; Bullen HA
    Environ Sci Technol; 2010 Jun; 44(11):4116-21. PubMed ID: 20429557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of Cr(VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide.
    Alvarez-Ayuso E; García-Sánchez A; Querol X
    J Hazard Mater; 2007 Apr; 142(1-2):191-8. PubMed ID: 16978771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of immobilized nanotubular TiO(2) electrode for photocatalytic hydrogen evolution: reduction of hexavalent chromium (Cr(VI)) in water.
    Yoon J; Shim E; Bae S; Joo H
    J Hazard Mater; 2009 Jan; 161(2-3):1069-74. PubMed ID: 18502574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of Cr(VI) from contaminated soil by electrokinetic remediation.
    Sawada A; Mori K; Tanaka S; Fukushima M; Tatsumi K
    Waste Manag; 2004; 24(5):483-90. PubMed ID: 15120432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins.
    Gode F; Pehlivan E
    J Hazard Mater; 2005 Mar; 119(1-3):175-82. PubMed ID: 15752863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speciation and removal of chromium from aqueous solution by white, yellow and red UAE sand.
    Khamis M; Jumean F; Abdo N
    J Hazard Mater; 2009 Sep; 169(1-3):948-52. PubMed ID: 19443116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica.
    Bankar AV; Kumar AR; Zinjarde SS
    J Hazard Mater; 2009 Oct; 170(1):487-94. PubMed ID: 19467781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of hexavalent chromium adsorption by persimmon tannin gel.
    Nakajima A; Baba Y
    Water Res; 2004 Jul; 38(12):2859-64. PubMed ID: 15223280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lifetime and regeneration of immobilized titania for photocatalytic removal of aqueous hexavalent chromium.
    Tuprakay S; Liengcharernsit W
    J Hazard Mater; 2005 Sep; 124(1-3):53-8. PubMed ID: 16046253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.