BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10998306)

  • 1. Atomic Force Microscopy Study of Ultrafine Particles Prepared in Reverse Micelles.
    Sato H; Ohtsu T; Komasawa I
    J Colloid Interface Sci; 2000 Oct; 230(1):200-204. PubMed ID: 10998306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Palladium Ultrafine Particles in Reverse Micelles.
    Chen DH; Wang CC; Huang TC
    J Colloid Interface Sci; 1999 Feb; 210(1):123-129. PubMed ID: 9924114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AFM capabilities in characterization of particles and surfaces: from angstroms to microns.
    Starostina N; Brodsky M; Prikhodko S; Hoo CM; Mecartney ML; West P
    J Cosmet Sci; 2008; 59(3):225-32. PubMed ID: 18528590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Platinum Ultrafine Particles in AOT Reverse Micelles.
    Chen DH; Yeh JJ; Huang TC
    J Colloid Interface Sci; 1999 Jul; 215(1):159-166. PubMed ID: 10362484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Gravity on Colloidal Deposition Studied by Atomic Force Microscopy.
    Dokou E; Barteau MA; Wagner NJ; Lenhoff AM
    J Colloid Interface Sci; 2001 Aug; 240(1):9-16. PubMed ID: 11446780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative observation of the recombinant adeno-associated virus 2 using transmission electron microscopy and atomic force microscopy.
    Chen H
    Microsc Microanal; 2007 Oct; 13(5):384-9. PubMed ID: 17900390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy.
    Mavrocordatos D; Pronk W; Boiler M
    Water Sci Technol; 2004; 50(12):9-18. PubMed ID: 15685998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of Nanosized Metallic Particles in Polyaniline.
    Wang J; Neoh KG; Kang ET
    J Colloid Interface Sci; 2001 Jul; 239(1):78-86. PubMed ID: 11397051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of counterion and surface influence on micelle formation using tapping mode atomic force microscopy in air.
    Chaal L; Pillier F; Saidani B; Joiret S; Pailleret A; Deslouis C
    J Phys Chem B; 2006 Nov; 110(43):21710-8. PubMed ID: 17064130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification of the recombinant hepatitis B virus core antigen (rHBcAg) produced in the yeast Saccharomyces cerevisiae and comparative observation of its particles by transmission electron microscopy (TEM) and atomic force microscopy (AFM).
    Chen H; Lü JH; Liang WQ; Huang YH; Zhang WJ; Zhang DB
    Micron; 2004; 35(5):311-8. PubMed ID: 15006357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of CdS Nanoparticles Formed in Reverse Micelles into Mesoporous Silica.
    Hirai T; Okubo H; Komasawa I
    J Colloid Interface Sci; 2001 Mar; 235(2):358-364. PubMed ID: 11254314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.
    Cho SH; Park SM
    J Phys Chem B; 2006 Dec; 110(51):25656-64. PubMed ID: 17181203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metalated diblock and triblock poly(ethylene oxide)-block-poly(4-vinylpyridine) copolymers: understanding of micelle and bulk structure.
    Bronstein LM; Sidorov SN; Zhirov V; Zhirov D; Kabachii YA; Kochev SY; Valetsky PM; Stein B; Kiseleva OI; Polyakov SN; Shtykova EV; Nikulina EV; Svergun DI; Khokhlov AR
    J Phys Chem B; 2005 Oct; 109(40):18786-98. PubMed ID: 16853418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-tuneable and micro-patterned iron nanoparticles derived from biomolecules via microcontact printing SAM-modified substrates and controlled-potential electrolyses.
    Tominaga M; Miyahara K; Soejima K; Nomura S; Matsumoto M; Taniguchi I
    J Colloid Interface Sci; 2007 Sep; 313(1):135-40. PubMed ID: 17532000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size, number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD.
    Kaegi R; Wagner T; Hetzer B; Sinnet B; Tzvetkov G; Boller M
    Water Res; 2008 May; 42(10-11):2778-86. PubMed ID: 18348895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of atomic force microscopy (AFM) for microfabric study of cohesive soils.
    Sachan A
    J Microsc; 2008 Dec; 232(3):422-31. PubMed ID: 19094019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force and scanning electron microscopy of atmospheric particles.
    Barkay Z; Teller A; Ganor E; Levin Z; Shapira Y
    Microsc Res Tech; 2005 Oct; 68(2):107-14. PubMed ID: 16228985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesion of spherical polyelectrolyte brushes on mica: an in situ AFM investigation.
    Gliemann H; Mei Y; Ballauff M; Schimmel T
    Langmuir; 2006 Aug; 22(17):7254-9. PubMed ID: 16893223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of atomic force microscopy to the study of natural and model soil particles.
    Cheng S; Bryant R; Doerr SH; Rhodri Williams P; Wright CJ
    J Microsc; 2008 Sep; 231(3):384-94. PubMed ID: 18754993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.