BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 10998570)

  • 1. Hydrophobins, the fungal coat unravelled.
    Wösten HA; de Vocht ML
    Biochim Biophys Acta; 2000 Sep; 1469(2):79-86. PubMed ID: 10998570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces.
    de Vocht ML; Scholtmeijer K; van der Vegte EW; de Vries OM; Sonveaux N; Wösten HA; Ruysschaert JM; Hadziloannou G; Wessels JG; Robillard GT
    Biophys J; 1998 Apr; 74(4):2059-68. PubMed ID: 9545064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The functional role of Cys3-Cys4 loop in hydrophobin HGFI.
    Niu B; Gong Y; Gao X; Xu H; Qiao M; Li W
    Amino Acids; 2014 Nov; 46(11):2615-25. PubMed ID: 25240738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi.
    Pham CLL; Rodríguez de Francisco B; Valsecchi I; Dazzoni R; Pillé A; Lo V; Ball SR; Cappai R; Wien F; Kwan AH; Guijarro JI; Sunde M
    J Mol Biol; 2018 Oct; 430(20):3784-3801. PubMed ID: 30096347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the self-assembly and the accompanying structural changes of hydrophobin SC3 on a hydrophobic surface by mass spectrometry.
    Wang X; Permentier HP; Rink R; Kruijtzer JA; Liskamp RM; Wösten HA; Poolman B; Robillard GT
    Biophys J; 2004 Sep; 87(3):1919-28. PubMed ID: 15345568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates.
    de Vocht ML; Reviakine I; Ulrich WP; Bergsma-Schutter W; Wösten HA; Vogel H; Brisson A; Wessels JG; Robillard GT
    Protein Sci; 2002 May; 11(5):1199-205. PubMed ID: 11967376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous self-assembly of SC3 hydrophobins into nanorods in aqueous solution.
    Zykwinska A; Guillemette T; Bouchara JP; Cuenot S
    Biochim Biophys Acta; 2014 Jul; 1844(7):1231-7. PubMed ID: 24732577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins.
    Ren Q; Kwan AH; Sunde M
    Proteins; 2014 Jun; 82(6):990-1003. PubMed ID: 24218020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei.
    Askolin S; Linder M; Scholtmeijer K; Tenkanen M; Penttilä M; de Vocht ML; Wösten HA
    Biomacromolecules; 2006 Apr; 7(4):1295-301. PubMed ID: 16602752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins.
    Ball SR; Pham CLL; Lo V; Morris VK; Kwan AH; Sunde M
    Methods Mol Biol; 2020; 2073():55-72. PubMed ID: 31612436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of proteins into a three-dimensional multilayer system: investigation of the surface of the human fungal pathogen Aspergillus fumigatus.
    Zykwinska A; Pihet M; Radji S; Bouchara JP; Cuenot S
    Biochim Biophys Acta; 2014 Jun; 1844(6):1137-44. PubMed ID: 24631542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces.
    Cheng Y; Wang B; Wang Y; Zhang H; Liu C; Yang L; Chen Z; Wang Y; Yang H; Wang Z
    J Colloid Interface Sci; 2020 Aug; 573():384-395. PubMed ID: 32298932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface.
    Fan H; Wang X; Zhu J; Robillard GT; Mark AE
    Proteins; 2006 Sep; 64(4):863-73. PubMed ID: 16770796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SC3 hydrophobin self-assembles into a membrane with distinct mass transfer properties.
    Wang X; Shi F; Wösten HA; Hektor H; Poolman B; Robillard GT
    Biophys J; 2005 May; 88(5):3434-43. PubMed ID: 15749774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin.
    Niu B; Li B; Wang H; Guo R; Xu H; Qiao M; Li W
    Colloids Surf B Biointerfaces; 2017 Feb; 150():344-351. PubMed ID: 27842929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of amphipathic amyloid monolayers from fungal hydrophobin proteins.
    Morris VK; Sunde M
    Methods Mol Biol; 2013; 996():119-29. PubMed ID: 23504421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins.
    Paananen A; Weich S; Szilvay GR; Leitner M; Tappura K; Ebner A
    J Biol Chem; 2021; 296():100728. PubMed ID: 33933454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state NMR spectroscopy of functional amyloid from a fungal hydrophobin: a well-ordered β-sheet core amidst structural heterogeneity.
    Morris VK; Linser R; Wilde KL; Duff AP; Sunde M; Kwan AH
    Angew Chem Int Ed Engl; 2012 Dec; 51(50):12621-5. PubMed ID: 23125123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobins: multipurpose proteins.
    Wösten HA
    Annu Rev Microbiol; 2001; 55():625-46. PubMed ID: 11544369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of hydrophobins to functionalize surfaces.
    Scholtmeijer K; Janssen MI; van Leeuwen MB; van Kooten TG; Hektor H; Wösten HA
    Biomed Mater Eng; 2004; 14(4):447-54. PubMed ID: 15472393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.