These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10998609)

  • 1. Comparison of an in-shoe pressure measurement device to a force plate: concurrent validity of center of pressure measurements.
    Chesnin KJ; Selby-Silverstein L; Besser MP
    Gait Posture; 2000 Oct; 12(2):128-33. PubMed ID: 10998609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-shoe center of pressure: indirect force plate vs. direct insole measurement.
    Debbi EM; Wolf A; Goryachev Y; Yizhar Z; Luger E; Debi R; Haim A
    Foot (Edinb); 2012 Dec; 22(4):269-75. PubMed ID: 22938890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-shoe plantar pressure measurements for patients with knee osteoarthritis: Reliability and effects of lateral heel wedges.
    Leitch KM; Birmingham TB; Jones IC; Giffin JR; Jenkyn TR
    Gait Posture; 2011 Jul; 34(3):391-6. PubMed ID: 21741243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of in-shoe heel lifts on plantar pressure and center of pressure in the medial-lateral direction during walking.
    Zhang X; Li B
    Gait Posture; 2014 Apr; 39(4):1012-6. PubMed ID: 24440428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Direct Method for Mapping the Center of Pressure Measured by an Insole Pressure Sensor System to the Shoe's Local Coordinate System.
    Weaver BT; Braman JE; Haut RC
    J Biomech Eng; 2016 Jun; 138(6):061007. PubMed ID: 27109294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immediate effect of orthopedic shoe and functional foot orthosis on center of pressure displacement and gait parameters in juvenile flexible flat foot.
    Aboutorabi A; Saeedi H; Kamali M; Farahmand B; Eshraghi A; Dolagh RS
    Prosthet Orthot Int; 2014 Jun; 38(3):218-23. PubMed ID: 23986466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of Foot Plantar Center of Pressure Trajectories with Low-Cost Instrumented Insoles Using an Individual-Specific Nonlinear Model.
    Hu X; Zhao J; Peng D; Sun Z; Qu X
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29389857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of Moticon's OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements.
    Stöggl T; Martiner A
    J Sports Sci; 2017 Jan; 35(2):196-206. PubMed ID: 27010531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ambulatory assessment of ankle and foot dynamics.
    Schepers HM; Koopman HF; Veltink PH
    IEEE Trans Biomed Eng; 2007 May; 54(5):895-902. PubMed ID: 17518287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability and validity of the protokinetics movement analysis software in measuring center of pressure during walking.
    Lynall RC; Zukowski LA; Plummer P; Mihalik JP
    Gait Posture; 2017 Feb; 52():308-311. PubMed ID: 28033577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Subject-Specific Foot-Ground Contact Model for Walking.
    Jackson JN; Hass CJ; Fregly BJ
    J Biomech Eng; 2016 Sep; 138(9):0910021-09100212. PubMed ID: 27379886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foot center of pressure trajectory alteration by biomechanical manipulation of shoe design.
    Khoury M; Wolf A; Debbi EM; Herman A; Haim A
    Foot Ankle Int; 2013 Apr; 34(4):593-8. PubMed ID: 23449662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plantar pressure measurements using an in-shoe system and a pressure platform: a comparison.
    Chevalier TL; Hodgins H; Chockalingam N
    Gait Posture; 2010 Mar; 31(3):397-9. PubMed ID: 20044257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between muscular strength and deflection characteristics of the center of foot pressure during landing after crossover stepping in the elderly.
    Takeuchi Y; Shimomura Y; Iwanaga K; Katsuura T
    J Physiol Anthropol; 2009 Jan; 28(1):1-5. PubMed ID: 19212088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of heel height and high-heel experience on foot stability during quiet standing.
    Wan FKW; Yick KL; Yu WWM
    Gait Posture; 2019 Feb; 68():252-257. PubMed ID: 30551049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of shoe modifications on center of pressure and in-shoe plantar pressures.
    Xu H; Akai M; Kakurai S; Yokota K; Kaneko H
    Am J Phys Med Rehabil; 1999; 78(6):516-24. PubMed ID: 10574166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ambulatory estimation of center of mass displacement during walking.
    Schepers HM; van Asseldonk EH; Buurke JH; Veltink PH
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1189-95. PubMed ID: 19174347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability of an in-shoe pressure measurement system during treadmill walking.
    Kernozek TW; LaMott EE; Dancisak MJ
    Foot Ankle Int; 1996 Apr; 17(4):204-9. PubMed ID: 8696496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces.
    Liedtke C; Fokkenrood SA; Menger JT; van der Kooij H; Veltink PH
    Gait Posture; 2007 Jun; 26(1):39-47. PubMed ID: 17010612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.