These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 10998614)
1. Gait analysis and energy consumption of below-knee amputees wearing three different prosthetic feet. Huang GF; Chou YL; Su FC Gait Posture; 2000 Oct; 12(2):162-8. PubMed ID: 10998614 [TBL] [Abstract][Full Text] [Related]
2. Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet. Czerniecki JM; Gitter A; Munro C J Biomech; 1991; 24(1):63-75. PubMed ID: 2026634 [TBL] [Abstract][Full Text] [Related]
3. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. Torburn L; Powers CM; Guiterrez R; Perry J J Rehabil Res Dev; 1995 May; 32(2):111-9. PubMed ID: 7562650 [TBL] [Abstract][Full Text] [Related]
4. Gait patterns of transtibial amputee patients walking indoors barefoot. Han TR; Chung SG; Shin HI Am J Phys Med Rehabil; 2003 Feb; 82(2):96-100. PubMed ID: 12544754 [TBL] [Abstract][Full Text] [Related]
5. Analysis of mechanical and metabolic factors in the gait of congenital below knee amputees. A comparison of the SACH and Seattle feet. Colborne GR; Naumann S; Longmuir PE; Berbrayer D Am J Phys Med Rehabil; 1992 Oct; 71(5):272-8. PubMed ID: 1388973 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the International Committee of the Red Cross foot with the solid ankle cushion heel foot during gait: a randomized double-blind study. Turcot K; Sagawa Y; Lacraz A; Lenoir J; Assal M; Armand S Arch Phys Med Rehabil; 2013 Aug; 94(8):1490-7. PubMed ID: 23578592 [TBL] [Abstract][Full Text] [Related]
8. Influence of prosthetic foot design on sound limb loading in adults with unilateral below-knee amputations. Powers CM; Torburn L; Perry J; Ayyappa E Arch Phys Med Rehabil; 1994 Jul; 75(7):825-9. PubMed ID: 8024435 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Gitter A; Czerniecki JM; DeGroot DM Am J Phys Med Rehabil; 1991 Jun; 70(3):142-8. PubMed ID: 2039616 [TBL] [Abstract][Full Text] [Related]
10. Energy costs and performance of transfemoral amputees and non-amputees during walking and running: A pilot study. Mengelkoch LJ; Kahle JT; Highsmith MJ Prosthet Orthot Int; 2017 Oct; 41(5):484-491. PubMed ID: 27885098 [TBL] [Abstract][Full Text] [Related]
11. Energy costs & performance of transtibial amputees & non-amputees during walking & running. Mengelkoch LJ; Kahle JT; Highsmith MJ Int J Sports Med; 2014 Dec; 35(14):1223-8. PubMed ID: 25144429 [TBL] [Abstract][Full Text] [Related]
12. Segment velocities in normal and transtibial amputees: prosthetic design implications. Rao SS; Boyd LA; Mulroy SJ; Bontrager EL; Gronley JK; Perry J IEEE Trans Rehabil Eng; 1998 Jun; 6(2):219-26. PubMed ID: 9631330 [TBL] [Abstract][Full Text] [Related]
13. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Fey NP; Klute GK; Neptune RR Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical comparison of the energy-storing capabilities of SACH and Carbon Copy II prosthetic feet during the stance phase of gait in a person with below-knee amputation. Barr AE; Siegel KL; Danoff JV; McGarvey CL; Tomasko A; Sable I; Stanhope SJ Phys Ther; 1992 May; 72(5):344-54. PubMed ID: 1631203 [TBL] [Abstract][Full Text] [Related]
15. A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J Clin Rehabil; 2008; 22(10-11):896-901. PubMed ID: 18955421 [TBL] [Abstract][Full Text] [Related]
16. Transtibial amputee gait efficiency: Energy storage and return versus solid ankle cushioned heel prosthetic feet. Gardiner J; Bari AZ; Howard D; Kenney L J Rehabil Res Dev; 2016; 53(6):1133-1138. PubMed ID: 28355033 [TBL] [Abstract][Full Text] [Related]
17. The effects of prosthetic foot type and visual alteration on postural steadiness in below-knee amputees. Arifin N; Abu Osman NA; Ali S; Wan Abas WA Biomed Eng Online; 2014 Mar; 13(1):23. PubMed ID: 24597518 [TBL] [Abstract][Full Text] [Related]
18. Low-cost prosthetic feet for underserved populations: A comparison of gait analysis and mechanical stiffness. Banks BP; Frei JS; Spencer A; Renninger KD; Grover JK; Abbott K; Carlson BJ; Bruening DA Prosthet Orthot Int; 2023 Aug; 47(4):399-406. PubMed ID: 36701193 [TBL] [Abstract][Full Text] [Related]
19. Comparison of four different categories of prosthetic feet during ramp ambulation in unilateral transtibial amputees. Agrawal V; Gailey RS; Gaunaurd IA; O'Toole C; Finnieston A; Tolchin R Prosthet Orthot Int; 2015 Oct; 39(5):380-9. PubMed ID: 24925671 [TBL] [Abstract][Full Text] [Related]
20. Lower limb amputee gait characteristics on a specifically designed test ramp: Preliminary results of a biomechanical comparison of two prosthetic foot concepts. Schmalz T; Altenburg B; Ernst M; Bellmann M; Rosenbaum D Gait Posture; 2019 Feb; 68():161-167. PubMed ID: 30497035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]