These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10999375)

  • 1. Experimental and computational studies of the relative flow field in a centrifugal blood pump.
    Ng BT; Chan WK; Yu SC; Li HD
    Crit Rev Biomed Eng; 2000; 28(1-2):119-25. PubMed ID: 10999375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flow patterns within the impeller passages of a centrifugal blood pump model.
    Yu SC; Ng BT; Chan WK; Chua LP
    Med Eng Phys; 2000 Jul; 22(6):381-93. PubMed ID: 11086249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational study of the effects of inlet guide vanes on the performance of a centrifugal blood pump.
    Chan WK; Wong YW; Yu SC; Chua LP
    Artif Organs; 2002 Jun; 26(6):534-42. PubMed ID: 12072110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles.
    Song G; Chua LP; Lim TM
    Artif Organs; 2010 Feb; 34(2):98-104. PubMed ID: 19817732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical analysis of the inner flow field of a biocentrifugal blood pump.
    Chua LP; Song G; Lim TM; Zhou T
    Artif Organs; 2006 Jun; 30(6):467-77. PubMed ID: 16734599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump.
    Ozturk C; Aka IB; Lazoglu I
    Int J Artif Organs; 2018 Nov; 41(11):730-737. PubMed ID: 29998774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump.
    Fang P; Du J; Yu S
    Int J Artif Organs; 2020 Dec; 43(12):782-795. PubMed ID: 32312159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse design and CFD investigation of blood pump impeller.
    Li H; Chan WK
    Crit Rev Biomed Eng; 2000; 28(1-2):75-80. PubMed ID: 10999368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamics analysis to establish the design process of a centrifugal blood pump: second report.
    Miyazoe Y; Sawairi T; Ito K; Konishi Y; Yamane T; Nishida M; Asztalos B; Masuzawa T; Tsukiya T; Endo S; Taenaka Y
    Artif Organs; 1999 Aug; 23(8):762-8. PubMed ID: 10463504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.
    Watanabe N; Masuda T; Iida T; Kataoka H; Fujimoto T; Takatani S
    Artif Organs; 2005 Jan; 29(1):26-35. PubMed ID: 15644080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Design of an axial blood pump of diffuser with splitter blades and cantilevered main blades].
    Liu G; Xi J; Chen H; Zhang Y; Hou J; Zhou J; Sun H; Hu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Jun; 36(3):379-385. PubMed ID: 31232539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Fluid Dynamics Model of Continuous-Flow Total Artificial Heart: Right Pump Impeller Design Changes to Improve Biocompatibility.
    Goodin MS; Horvath DJ; Kuban BD; Polakowski AR; Fukamachi K; Flick CR; Karimov JH
    ASAIO J; 2022 Jun; 68(6):829-838. PubMed ID: 34560715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization.
    Wu J; Antaki JF; Wagner WR; Snyder TA; Paden BE; Borovetz HS
    ASAIO J; 2005; 51(5):636-43. PubMed ID: 16322730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PIV measurements of flow in a centrifugal blood pump: steady flow.
    Day SW; McDaniel JC
    J Biomech Eng; 2005 Apr; 127(2):244-53. PubMed ID: 15971702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational flow study of the continuous flow ventricular assist device, prototype number 3 blood pump.
    Anderson JB; Wood HG; Allaire PE; Bearnson G; Khanwilkar P
    Artif Organs; 2000 May; 24(5):377-85. PubMed ID: 10848679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests.
    Takiura K; Masuzawa T; Endo S; Wakisaka Y; Tatsumi E; Taenaka Y; Takano H; Yamane T; Nishida M; Asztalos B; Konishi Y; Miyazoe Y; Ito K
    Artif Organs; 1998 May; 22(5):393-8. PubMed ID: 9609347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of impeller rotational phase on the FDA blood pump velocity fields.
    Ucak K; Karatas F; Pekkan K
    Artif Organs; 2024 Oct; 48(10):1126-1137. PubMed ID: 38957988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principle and basic property of the sequential flow pump.
    Hara S; Maeno E; Li X; Yurimoto T; Isoyama T; Saito I; Ono T; Abe Y
    J Artif Organs; 2017 Sep; 20(3):215-220. PubMed ID: 28424884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigation of the effects of the clearance gap between the inducer and impeller of an axial blood pump.
    Chan WK; Wong YW; Ong W; Koh SY; Chong V
    Artif Organs; 2005 Mar; 29(3):250-8. PubMed ID: 15725228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.