BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10999433)

  • 1. In vivo singlet-oxygen generation in blood of chromium(VI)-treated mice: an electron spin resonance spin-trapping study.
    Hojo Y; Okado A; Kawazoe S; Mizutani T
    Biol Trace Elem Res; 2000 Jul; 76(1):85-93. PubMed ID: 10999433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct evidence for in vivo hydroxyl radical generation in blood of mice after acute chromium(VI) intake: electron spin resonance spin-trapping investigation.
    Hojo Y; Okado A; Kawazoe S; Mizutani T
    Biol Trace Elem Res; 2000 Jul; 76(1):75-84. PubMed ID: 10999432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ESR detection of 1O2 reveals enhanced redox activity in illuminated cell cultures.
    Lavi R; Sinyakov M; Samuni A; Shatz S; Friedmann H; Shainberg A; Breitbart H; Lubart R
    Free Radic Res; 2004 Sep; 38(9):893-902. PubMed ID: 15621706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sonochemical activation of hematoporphyrin: an ESR study.
    Yumita N; Nishigaki R; Umemura K; Morse PD; Swartz HM; Cain CA; Umemura S
    Radiat Res; 1994 May; 138(2):171-6. PubMed ID: 8183986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis.
    Leonard S; Wang S; Zang L; Castranova V; Vallyathan V; Shi X
    J Environ Pathol Toxicol Oncol; 2000; 19(1-2):49-60. PubMed ID: 10905508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scavenging activity of "beta catechin" on reactive oxygen species generated by photosensitization of riboflavin.
    Kumari MV; Yoneda T; Hiramatsu M
    Biochem Mol Biol Int; 1996 May; 38(6):1163-70. PubMed ID: 8739038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of singlet oxygen in cytochrome P450-dependent substrate oxidations.
    Osada M; Ogura Y; Yasui H; Sakurai H
    Biochem Biophys Res Commun; 1999 Sep; 263(2):392-7. PubMed ID: 10491304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-electron reduction of chromium(VI) by alpha-lipoic acid and related hydroxyl radical generation, dG hydroxylation and nuclear transcription factor-kappaB activation.
    Chen F; Ye J; Zhang X; Rojanasakul Y; Shi X
    Arch Biochem Biophys; 1997 Feb; 338(2):165-72. PubMed ID: 9028868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ultrasound and ionizing radiation on a sterically hindered cyclic secondary amine: an ESR study.
    Kondo T; Riesz P
    Radiat Res; 1991 Jul; 127(1):11-8. PubMed ID: 1648754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of free radical formation and F2-isoprostanes in vivo by acute Cr(VI) poisoning.
    Kadiiska MB; Morrow JD; Awad JA; Roberts LJ; Mason RP
    Chem Res Toxicol; 1998 Dec; 11(12):1516-20. PubMed ID: 9860496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singlet oxygen-trapping reaction as a method of (1)O2 detection: role of some reducing agents.
    Dzwigaj S; Pezerat H
    Free Radic Res; 1995 Aug; 23(2):103-15. PubMed ID: 7581808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased endogenous ascorbyl free radical formation with singlet oxygen scavengers in reperfusion injury: an EPR and functional recovery study in rat hearts.
    Lee JW; Bobst EV; Wang YG; Ashraf MM; Bobst AM
    Cell Mol Biol (Noisy-le-grand); 2000 Dec; 46(8):1383-95. PubMed ID: 11156483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence.
    Reiter RJ; Tan DX; Manchester LC; Qi W
    Cell Biochem Biophys; 2001; 34(2):237-56. PubMed ID: 11898866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singlet oxygen-dependent hydroxyl radical formation during uroporphyrin-mediated photosensitization in the presence of NADPH.
    Takeshita K; Olea-Azar CA; Mizuno M; Ozawa T
    Antioxid Redox Signal; 2000; 2(2):355-62. PubMed ID: 11229539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of singlet oxygen from hematoporphyrin derivative by electron spin resonance.
    Ando T; Yoshikawa T; Tanigawa T; Kohno M; Yoshida N; Kondo M
    Life Sci; 1997; 61(19):1953-9. PubMed ID: 9364200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the 4-oxo-2,2,6,6-tetramethylpiperidinooxy dosimeter for in situ radiolysis electron spin resonance studies.
    Madden KP
    Radiat Res; 1997 Mar; 147(3):335-41. PubMed ID: 9052680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin trapping study of reactive oxygen species formation during bopindolol peroxidation.
    Kruk I; Michalska T; Kladna A; Aboul-Enein HY
    Biopolymers; 2002 Oct; 65(2):89-94. PubMed ID: 12209459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scavenging of reactive oxygen species by N-substituted indole-2 and 3-carboxamides.
    Aboul-Enein HY; Kruk I; Lichszteld K; Michalska T; Kladna A; Marczynski S; Olgen S
    Luminescence; 2004; 19(1):1-7. PubMed ID: 14981640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion.
    Konaka R; Kasahara E; Dunlap WC; Yamamoto Y; Chien KC; Inoue M
    Free Radic Biol Med; 1999 Aug; 27(3-4):294-300. PubMed ID: 10468201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.