These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 10999478)

  • 1. Synthesis of a cationic pyridoxamine conjugation reagent and application to the mechanistic analysis of an artificial transaminase.
    Kuang H; Häring D; Qi D; Mazhary A; Distefano MD
    Bioorg Med Chem Lett; 2000 Sep; 10(18):2091-5. PubMed ID: 10999478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific host-guest interactions in a protein-based artificial transaminase.
    Häring D; Distefano MD
    Bioorg Med Chem; 2001 Sep; 9(9):2461-6. PubMed ID: 11553487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring routes to stabilize a cationic pyridoxamine in an artificial transaminase: site-directed mutagenesis versus synthetic cofactors.
    Häring D; Lees MR; Banaszak LJ; Distefano MD
    Protein Eng; 2002 Jul; 15(7):603-10. PubMed ID: 12200543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymes by design: chemogenetic assembly of transamination active sites containing lysine residues for covalent catalysis.
    Häring D; Distefano MD
    Bioconjug Chem; 2001; 12(3):385-90. PubMed ID: 11353536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of metal ions on the rates and enantioselectivities of reactions catalyzed by a series of semisynthetic transaminases created by site directed mutagenesis.
    Qi D; Kuang H; Distefano MD
    Bioorg Med Chem Lett; 1998 Apr; 8(7):875-80. PubMed ID: 9871558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic effects on rates and substrate selectivities in polymeric transaminase mimics.
    Liu L; Rozenman M; Breslow R
    J Am Chem Soc; 2002 Oct; 124(43):12660-1. PubMed ID: 12392403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyridoxamine-amino acid chimeras in semisynthetic aminotransferase mimics.
    Roy RS; Imperiali B
    Protein Eng; 1997 Jun; 10(6):691-8. PubMed ID: 9278283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendrimeric pyridoxamine enzyme mimics.
    Liu L; Breslow R
    J Am Chem Soc; 2003 Oct; 125(40):12110-1. PubMed ID: 14518994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A potent polymer/pyridoxamine enzyme mimic.
    Liu L; Breslow R
    J Am Chem Soc; 2002 May; 124(18):4978-9. PubMed ID: 11982360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of human mitochondrial branched chain aminotransferase reaction intermediates: ketimine and pyridoxamine phosphate forms.
    Yennawar NH; Conway ME; Yennawar HP; Farber GK; Hutson SM
    Biochemistry; 2002 Oct; 41(39):11592-601. PubMed ID: 12269802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereochemistry of the transamination reaction catalyzed by aminodeoxychorismate lyase from Escherichia coli: close relationship between fold type and stereochemistry.
    Jhee KH; Yoshimura T; Miles EW; Takeda S; Miyahara I; Hirotsu K; Soda K; Kawata Y; Esaki N
    J Biochem; 2000 Oct; 128(4):679-86. PubMed ID: 11011151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of substrate-enzyme interaction between immobilized pyridoxamine and recombinant porcine pyridoxal kinase using surface plasmon resonance biosensor.
    Fong CC; Lai WP; Leung YC; Lo SC; Wong MS; Yang M
    Biochim Biophys Acta; 2002 Apr; 1596(1):95-107. PubMed ID: 11983425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecularly imprinted polymer-based synthetic transaminase.
    Svenson J; Zheng N; Nicholls IA
    J Am Chem Soc; 2004 Jul; 126(27):8554-60. PubMed ID: 15238014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three in One: Temperature, Solvent and Catalytic Stability by Engineering the Cofactor-Binding Element of Amine Transaminase.
    Börner T; Rämisch S; Bartsch S; Vogel A; Adlercreutz P; Grey C
    Chembiochem; 2017 Aug; 18(15):1482-1486. PubMed ID: 28470825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gabaculine and m-carboxyphenyl-pyridoxamine 5-phosphate as probes of the catalytic binding sites of 4-aminobutyrate aminotransferase.
    Kim DS; Moses U; Churchich JE
    Eur J Biochem; 1981 Aug; 118(2):303-8. PubMed ID: 7285925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and mechanistic insights into the kynurenine aminotransferase-mediated excretion of kynurenic acid.
    Okada K; Angkawidjaja C; Koga Y; Kanaya S
    J Struct Biol; 2014 Mar; 185(3):257-66. PubMed ID: 24473062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-induced changes in sulfhydryl reactivity of bacterial D-amino acid transaminase.
    Soper TS; Ueno H; Manning JM
    Arch Biochem Biophys; 1985 Jul; 240(1):1-8. PubMed ID: 4015092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transamination reactions with multiple turnovers catalyzed by hydrophobic pyridoxamine cofactors in the presence of polyethylenimine polymers.
    Liu L; Zhou W; Chruma J; Breslow R
    J Am Chem Soc; 2004 Jul; 126(26):8136-7. PubMed ID: 15225053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of two synthetic catalysts based on adipocyte lipid-binding protein.
    Ory JJ; Mazhary A; Kuang H; Davies RR; Distefano MD; Banaszak LJ
    Protein Eng; 1998 Apr; 11(4):253-61. PubMed ID: 9680187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of novel thermostable taurine-pyruvate transaminase from Geobacillus thermodenitrificans for chiral amine synthesis.
    Chen Y; Yi D; Jiang S; Wei D
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3101-11. PubMed ID: 26577674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.