These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10999602)

  • 21. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core.
    Pan J; Woodson SA
    J Mol Biol; 1998 Jul; 280(4):597-609. PubMed ID: 9677291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The self-splicing RNA of Tetrahymena is trapped in a less active conformation by gel purification.
    Walstrum SA; Uhlenbeck OC
    Biochemistry; 1990 Nov; 29(46):10573-6. PubMed ID: 2271667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site.
    Herschlag D; Cech TR
    Biochemistry; 1990 Nov; 29(44):10172-80. PubMed ID: 2271646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme.
    Bevilacqua PC; Sugimoto N; Turner DH
    Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alternative secondary structures in the 5' exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA.
    Woodson SA; Cech TR
    Biochemistry; 1991 Feb; 30(8):2042-50. PubMed ID: 1998665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Tetrahymena intron nucleotide connected to the GTP/arginine site.
    Yarus M; Levine J; Morin GB; Cech TR
    Nucleic Acids Res; 1989 Sep; 17(17):6969-81. PubMed ID: 2674904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A tertiary interaction in the Tetrahymena intron contributes to selection of the 5' splice site.
    Downs WD; Cech TR
    Genes Dev; 1994 May; 8(10):1198-211. PubMed ID: 7926724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing.
    Karbstein K; Lee J; Herschlag D
    Biochemistry; 2007 Apr; 46(16):4861-75. PubMed ID: 17385892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-splicing of the Tetrahymena intron from mRNA in mammalian cells.
    Hagen M; Cech TR
    EMBO J; 1999 Nov; 18(22):6491-500. PubMed ID: 10562561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2002 Mar; 291(5):1225-31. PubMed ID: 11883948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased efficiency of evolved group I intron spliceozymes by decreased side product formation.
    Amini ZN; Müller UF
    RNA; 2015 Aug; 21(8):1480-9. PubMed ID: 26106216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of 5-fluorouracil substitution on the self-splicing activity of Tetrahymena ribosomal RNA.
    Danenberg PV; Shea LC; Danenberg K
    Cancer Res; 1990 Mar; 50(6):1757-63. PubMed ID: 2407343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo facilitation of Tetrahymena group I intron splicing in Escherichia coli pre-ribosomal RNA.
    Zhang F; Ramsay ES; Woodson SA
    RNA; 1995 May; 1(3):284-92. PubMed ID: 7489500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2001 Jun; 284(4):948-54. PubMed ID: 11409885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons.
    Puttaraju M; Been MD
    Nucleic Acids Res; 1992 Oct; 20(20):5357-64. PubMed ID: 1279519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Folding of the group I intron ribozyme from the 26S rRNA gene of Candida albicans.
    Zhang Y; Leibowitz MJ
    Nucleic Acids Res; 2001 Jun; 29(12):2644-53. PubMed ID: 11410674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tetrahymena ribozyme disrupts rRNA processing in yeast.
    Good L; Elela SA; Nazar RN
    J Biol Chem; 1994 Sep; 269(35):22169-72. PubMed ID: 8071340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the mode of binding of substrates to the active site of Tetrahymena self-splicing RNA using 5-fluorouracil-substituted mini-exons.
    Danenberg PV; Shea LC; Danenberg K
    Biochemistry; 1989 Aug; 28(16):6779-85. PubMed ID: 2675974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Pneumocystis carinii group I intron ribozyme that does not require 2' OH groups on its 5' exon mimic for binding to the catalytic core.
    Testa SM; Haidaris CG; Gigliotti F; Turner DH
    Biochemistry; 1997 Dec; 36(49):15303-14. PubMed ID: 9398259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.