These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 10999938)

  • 1. An analysis of the variations in potency of grayanotoxin analogs in modifying frog sodium channels of differing subtypes.
    Yakehiro M; Yuki T; Yamaoka K; Furue T; Mori Y; Imoto K; Seyama I
    Mol Pharmacol; 2000 Oct; 58(4):692-700. PubMed ID: 10999938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State-dependent action of grayanotoxin I on Na(+) channels in frog ventricular myocytes.
    Yuki T; Yamaoka K; Yakehiro M; Seyama I
    J Physiol; 2001 Aug; 534(Pt 3):777-90. PubMed ID: 11483708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel site on sodium channel alpha-subunit responsible for the differential sensitivity of grayanotoxin in skeletal and cardiac muscle.
    Kimura T; Yamaoka K; Kinoshita E; Maejima H; Yuki T; Yakehiro M; Seyama I
    Mol Pharmacol; 2001 Oct; 60(4):865-72. PubMed ID: 11562450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-channel analysis of two types of Na+ currents in rat dorsal root ganglia.
    Motomura H; Fujikawa S; Tashiro N; Ito Y; Ogata N
    Pflugers Arch; 1995 Dec; 431(2):221-9. PubMed ID: 9026782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of grayanotoxin evoked modification of sodium channels in squid giant axons.
    Yakehiro M; Seyama I; Narahashi T
    Pflugers Arch; 1997 Feb; 433(4):403-12. PubMed ID: 9082327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of the pyrethroid tetramethrin on tetrodotoxin-sensitive and tetrodotoxin-resistant single sodium channels.
    Song JH; Narahashi T
    Brain Res; 1996 Mar; 712(2):258-64. PubMed ID: 8814900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of lipid-soluble toxins on sodium channels and L-type calcium channels in frog ventricular cells.
    Furue T; Yakehiro M; Seyama I
    Hiroshima J Med Sci; 1997 Mar; 46(1):43-50. PubMed ID: 9114566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia.
    Elliott AA; Elliott JR
    J Physiol; 1993 Apr; 463():39-56. PubMed ID: 8246189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the variation in use-dependent inactivation of high-threshold tetrodotoxin-resistant sodium currents recorded from rat sensory neurons.
    Tripathi PK; Trujillo L; Cardenas CA; Cardenas CG; de Armendi AJ; Scroggs RS
    Neuroscience; 2006 Dec; 143(4):923-38. PubMed ID: 17027172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taurine-induced modulation of voltage-sensitive Na+ channels in rat dorsal root ganglion neurons.
    Yu SS; Yu K; Gu Y; Ruan DY
    Brain Res Bull; 2005 Aug; 66(3):259-67. PubMed ID: 16023923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time course and temperature dependence of allethrin modulation of sodium channels in rat dorsal root ganglion cells.
    Ginsburg K; Narahashi T
    Brain Res; 1999 Nov; 847(1):38-49. PubMed ID: 10564734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-channel current/voltage relationships of two kinds of Na+ channel in vertebrate sensory neurons.
    Campbell DT
    Pflugers Arch; 1993 Jun; 423(5-6):492-6. PubMed ID: 8394570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contactin regulates the current density and axonal expression of tetrodotoxin-resistant but not tetrodotoxin-sensitive sodium channels in DRG neurons.
    Rush AM; Craner MJ; Kageyama T; Dib-Hajj SD; Waxman SG; Ranscht B
    Eur J Neurosci; 2005 Jul; 22(1):39-49. PubMed ID: 16029194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogenic development of the TTX-sensitive and TTX-insensitive Na+ channels in neurons of the rat dorsal root ganglia.
    Ogata N; Tatebayashi H
    Brain Res Dev Brain Res; 1992 Jan; 65(1):93-100. PubMed ID: 1312915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological properties of sodium current subtypes in small cells from adult rat dorsal root ganglia.
    Rush AM; Bräu ME; Elliott AA; Elliott JR
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):771-89. PubMed ID: 9714859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of alpha-dihydro-grayanotoxin-II on the electrical activity of the rabbit sino-atrial node.
    Nakao M; Seyama I
    J Physiol; 1984 Dec; 357():79-91. PubMed ID: 6512707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple types of Na(+) currents mediate action potential electrogenesis in small neurons of mouse dorsal root ganglia.
    Matsutomi T; Nakamoto C; Zheng T; Kakimura J; Ogata N
    Pflugers Arch; 2006 Oct; 453(1):83-96. PubMed ID: 16838161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow sodium conductances of dorsal root ganglion neurons: intraneuronal homogeneity and interneuronal heterogeneity.
    Rizzo MA; Kocsis JD; Waxman SG
    J Neurophysiol; 1994 Dec; 72(6):2796-815. PubMed ID: 7897490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage- and use-dependent inhibition of Na+ channels in rat sensory neurones by 4030W92, a new antihyperalgesic agent.
    Trezise DJ; John VH; Xie XM
    Br J Pharmacol; 1998 Jul; 124(5):953-63. PubMed ID: 9692781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of two types of Na+ channels in rat dorsal root ganglia.
    Ogata N; Tatebayashi H
    J Physiol; 1993 Jul; 466():9-37. PubMed ID: 8410717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.