These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 11000239)
1. Comparison of second-strand transfer requirements and RNase H cleavages catalyzed by human immunodeficiency virus type 1 reverse transcriptase (RT) and E478Q RT. Snyder CS; Roth MJ J Virol; 2000 Oct; 74(20):9668-79. PubMed ID: 11000239 [TBL] [Abstract][Full Text] [Related]
2. RNase H requirements for the second strand transfer reaction of human immunodeficiency virus type 1 reverse transcription. Smith CM; Smith JS; Roth MJ J Virol; 1999 Aug; 73(8):6573-81. PubMed ID: 10400754 [TBL] [Abstract][Full Text] [Related]
3. Template-primer binding affinity and RNase H cleavage specificity contribute to the strand transfer efficiency of HIV-1 reverse transcriptase. Luczkowiak J; Matamoros T; Menéndez-Arias L J Biol Chem; 2018 Aug; 293(35):13351-13363. PubMed ID: 29991591 [TBL] [Abstract][Full Text] [Related]
4. Effects of mutations in the polymerase domain on the polymerase, RNase H and strand transfer activities of human immunodeficiency virus type 1 reverse transcriptase. Gao HQ; Boyer PL; Arnold E; Hughes SH J Mol Biol; 1998 Apr; 277(3):559-72. PubMed ID: 9533880 [TBL] [Abstract][Full Text] [Related]
5. RNase H cleavage of tRNAPro mediated by M-MuLV and HIV-1 reverse transcriptases. Smith CM; Potts WB; Smith JS; Roth MJ Virology; 1997 Mar; 229(2):437-46. PubMed ID: 9126256 [TBL] [Abstract][Full Text] [Related]
6. Requirements for strand transfer between internal regions of heteropolymer templates by human immunodeficiency virus reverse transcriptase. DeStefano JJ; Mallaber LM; Rodriguez-Rodriguez L; Fay PJ; Bambara RA J Virol; 1992 Nov; 66(11):6370-8. PubMed ID: 1383563 [TBL] [Abstract][Full Text] [Related]
7. Specificity of human immunodeficiency virus-1 reverse transcriptase-associated ribonuclease H in removal of the minus-strand primer, tRNA(Lys3). Smith JS; Roth MJ J Biol Chem; 1992 Jul; 267(21):15071-9. PubMed ID: 1378844 [TBL] [Abstract][Full Text] [Related]
8. Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase. Julias JG; Ferris AL; Boyer PL; Hughes SH J Virol; 2001 Jul; 75(14):6537-46. PubMed ID: 11413321 [TBL] [Abstract][Full Text] [Related]
9. Mutations in the RNase H primer grip domain of murine leukemia virus reverse transcriptase decrease efficiency and accuracy of plus-strand DNA transfer. Mbisa JL; Nikolenko GN; Pathak VK J Virol; 2005 Jan; 79(1):419-27. PubMed ID: 15596835 [TBL] [Abstract][Full Text] [Related]
10. Role of post-transcriptional modifications of primer tRNALys,3 in the fidelity and efficacy of plus strand DNA transfer during HIV-1 reverse transcription. Auxilien S; Keith G; Le Grice SF; Darlix JL J Biol Chem; 1999 Feb; 274(7):4412-20. PubMed ID: 9933645 [TBL] [Abstract][Full Text] [Related]
11. Similarities and differences in the RNase H activities of human immunodeficiency virus type 1 reverse transcriptase and Moloney murine leukemia virus reverse transcriptase. Gao HQ; Sarafianos SG; Arnold E; Hughes SH J Mol Biol; 1999 Dec; 294(5):1097-113. PubMed ID: 10600369 [TBL] [Abstract][Full Text] [Related]
12. In vitro analysis of human immunodeficiency virus type 1 minus-strand strong-stop DNA synthesis and genomic RNA processing. Driscoll MD; Golinelli MP; Hughes SH J Virol; 2001 Jan; 75(2):672-86. PubMed ID: 11134281 [TBL] [Abstract][Full Text] [Related]
13. Evidence that HIV-1 reverse transcriptase employs the DNA 3' end-directed primary/secondary RNase H cleavage mechanism during synthesis and strand transfer. Purohit V; Balakrishnan M; Kim B; Bambara RA J Biol Chem; 2005 Dec; 280(49):40534-43. PubMed ID: 16221683 [TBL] [Abstract][Full Text] [Related]
14. Sequence requirements for removal of tRNA by an isolated human immunodeficiency virus type 1 RNase H domain. Smith CM; Leon O; Smith JS; Roth MJ J Virol; 1998 Aug; 72(8):6805-12. PubMed ID: 9658129 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Peliska JA; Benkovic SJ Science; 1992 Nov; 258(5085):1112-8. PubMed ID: 1279806 [TBL] [Abstract][Full Text] [Related]
16. Expression of an Mg2+-dependent HIV-1 RNase H construct for drug screening. Farias RV; Vargas DA; Castillo AE; Valenzuela B; Coté ML; Roth MJ; Leon O Antimicrob Agents Chemother; 2011 Oct; 55(10):4735-41. PubMed ID: 21768506 [TBL] [Abstract][Full Text] [Related]
17. HIV-1 reverse transcriptase-associated RNase H cleaves RNA/RNA in arrested complexes: implications for the mechanism by which RNase H discriminates between RNA/RNA and RNA/DNA. Götte M; Fackler S; Hermann T; Perola E; Cellai L; Gross HJ; Le Grice SF; Heumann H EMBO J; 1995 Feb; 14(4):833-41. PubMed ID: 7533725 [TBL] [Abstract][Full Text] [Related]
18. Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition. Lim D; Orlova M; Goff SP J Virol; 2002 Aug; 76(16):8360-73. PubMed ID: 12134040 [TBL] [Abstract][Full Text] [Related]
19. Mutating a region of HIV-1 reverse transcriptase implicated in tRNA(Lys-3) binding and the consequences for (-)-strand DNA synthesis. Arts EJ; Miller JT; Ehresmann B; Le Grice SF J Biol Chem; 1998 Jun; 273(23):14523-32. PubMed ID: 9603966 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of minus strand strong stop transfer in HIV-1 reverse transcription. Chen Y; Balakrishnan M; Roques BP; Fay PJ; Bambara RA J Biol Chem; 2003 Mar; 278(10):8006-17. PubMed ID: 12499370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]