These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11000475)

  • 1. Developmental regulation of glutamic acid decarboxylase mRNA expression and splicing in the rat striatum by dopamine.
    Küppers E; Sabolek M; Anders U; Pilgrim C; Beyer C
    Brain Res Mol Brain Res; 2000 Sep; 81(1-2):19-28. PubMed ID: 11000475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Messenger RNAs encoding glutamate-decarboxylases are differentially affected by nigrostriatal lesions in subpopulations of striatal neurons.
    Soghomonian JJ; Gonzales C; Chesselet MF
    Brain Res; 1992 Mar; 576(1):68-79. PubMed ID: 1515913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transplants of fetal substantia nigra regulate glutamic acid decarboxylase gene expression in host striatal neurons.
    Segovia J; Castro R; Notario V; Gale K
    Brain Res Mol Brain Res; 1991 Jul; 10(4):359-62. PubMed ID: 1656162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased striatal expression of glutamate decarboxylase 67 after priming of 6-hydroxydopamine-lesioned rats.
    Consolo S; Morelli M; Rimoldi M; Giorgi S; Di Chiara G
    Neuroscience; 1999; 89(4):1183-7. PubMed ID: 10362306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.
    Lindefors N; Brene S; Herrera-Marschitz M; Persson H
    Exp Brain Res; 1989; 77(3):611-20. PubMed ID: 2572447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopaminergic development of prenatal ventral mesencephalon and striatum in organotypic co-cultures.
    Lyng GD; Snyder-Keller A; Seegal RF
    Brain Res; 2007 Feb; 1133(1):1-9. PubMed ID: 17196555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
    Plotkin JL; Wu N; Chesselet MF; Levine MS
    Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopaminergic regulation of glutamic acid decarboxylase mRNA expression and GABA release in the striatum: a review.
    Lindefors N
    Prog Neuropsychopharmacol Biol Psychiatry; 1993 Nov; 17(6):887-903. PubMed ID: 8278600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel decrease of glutamic acid decarboxylase and preproenkephalin mRNA in the rat striatum following chronic treatment with a dopaminergic D1 antagonist and D2 agonist.
    Caboche J; Vernier P; Julien JF; Rogard M; Mallet J; Besson MJ
    J Neurochem; 1991 Feb; 56(2):428-35. PubMed ID: 1824860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. gamma-Aminobutyric acid function in the rat striatum is under the double influence of nigrostriatal dopaminergic and thalamostriatal inputs: two modes of regulation?
    Samuel D; Kumar U; Nieoullon A
    J Neurochem; 1988 Dec; 51(6):1704-10. PubMed ID: 3141584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific frequencies of spontaneous Ca2+ transients upregulate GAD 67 transcripts in embryonic spinal neurons.
    Watt SD; Gu X; Smith RD; Spitzer NC
    Mol Cell Neurosci; 2000 Oct; 16(4):376-87. PubMed ID: 11085875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Many spinal cord cells transiently express low molecular weight forms of glutamic acid decarboxylase during embryonic development.
    Behar T; Schaffner A; Laing P; Hudson L; Komoly S; Barker J
    Brain Res Dev Brain Res; 1993 Apr; 72(2):203-18. PubMed ID: 8485844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of mRNAs encoding two forms of glutamic acid decarboxylase in the rat hippocampal formation.
    Houser CR; Esclapez M
    Hippocampus; 1994 Oct; 4(5):530-45. PubMed ID: 7889124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal activity and neurotrophic factors regulate GAD-65/67 mRNA and protein expression in organotypic cultures of rat visual cortex.
    Patz S; Wirth MJ; Gorba T; Klostermann O; Wahle P
    Eur J Neurosci; 2003 Jul; 18(1):1-12. PubMed ID: 12859332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental kinetics of GAD family mRNAs parallel neurogenesis in the rat spinal cord.
    Somogyi R; Wen X; Ma W; Barker JL
    J Neurosci; 1995 Apr; 15(4):2575-91. PubMed ID: 7722616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex differences in GABA turnover and glutamic acid decarboxylase (GAD(65) and GAD(67)) mRNA in the rat hypothalamus.
    Searles RV; Yoo MJ; He JR; Shen WB; Selmanoff M
    Brain Res; 2000 Sep; 878(1-2):11-9. PubMed ID: 10996132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods.
    Esclapez M; Tillakaratne NJ; Tobin AJ; Houser CR
    J Comp Neurol; 1993 May; 331(3):339-62. PubMed ID: 8514913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adult and embryonic GAD transcripts are spatiotemporally regulated during postnatal development in the rat brain.
    Popp A; Urbach A; Witte OW; Frahm C
    PLoS One; 2009; 4(2):e4371. PubMed ID: 19190758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential regulation of glutamic acid decarboxylase mRNA and tyrosine hydroxylase mRNA expression in the aged manganese-treated rats.
    Tomás-Camardiel M; Herrera AJ; Venero JL; Cruz Sánchez-Hidalgo M; Cano J; Machado A
    Brain Res Mol Brain Res; 2002 Jun; 103(1-2):116-29. PubMed ID: 12106697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmentally regulated expression of an exon containing a stop codon in the gene for glutamic acid decarboxylase.
    Bond RW; Wyborski RJ; Gottlieb DI
    Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8771-5. PubMed ID: 2247446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.