BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11000550)

  • 1. Interaction of the antioxidant flavonoid quercetin with planar lipid bilayers.
    Movileanu L; Neagoe I; Flonta ML
    Int J Pharm; 2000 Sep; 205(1-2):135-46. PubMed ID: 11000550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Quercetin interaction behaviors with lipid bilayers: Toward understanding its antioxidative effect within biomembrane.
    Han J; Amau M; Okamoto Y; Suga K; Umakoshi H
    J Biosci Bioeng; 2021 Jul; 132(1):49-55. PubMed ID: 33863664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rafts making and rafts braking: how plant flavonoids may control membrane heterogeneity.
    Tarahovsky YS; Muzafarov EN; Kim YA
    Mol Cell Biochem; 2008 Jul; 314(1-2):65-71. PubMed ID: 18414995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of the natural antioxidant quercetin and anions of the Hofmeister series on liposomes marked with chlorophyll a.
    Drăguşin M; Tugulea L; Ganea C
    Gen Physiol Biophys; 2010 Mar; 29(1):41-9. PubMed ID: 20371879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of beta-lactam antibiotics on lipid bilayer membranes. I. Penicillin antibiotics].
    Taisova AS; Korolev NP; Griaznova NS; Zinchenko EIa; Lesovaia ZI
    Antibiot Khimioter; 1989 Jul; 34(7):496-504. PubMed ID: 2818081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of quercetin on the electrical properties of model lipid membranes and human glioblastoma cells.
    Kruszewski M; Kusaczuk M; Kotyńska J; Gál M; Krętowski R; Cechowska-Pasko M; Naumowicz M
    Bioelectrochemistry; 2018 Dec; 124():133-141. PubMed ID: 30029034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Changes of dipole potential of phospholipid membranes resulted from flavonoid adsorption].
    Ostroumova OS; Efimova SS; Shchagina LV
    Biofizika; 2013; 58(3):474-80. PubMed ID: 24159816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of flavonoids on the Abeta(25-35)-phospholipid bilayers interaction.
    Tedeschi A; D'Errico G; Lauro MR; Sansone F; Di Marino S; D'Ursi AM; Aquino RP
    Eur J Med Chem; 2010 Sep; 45(9):3998-4003. PubMed ID: 20579783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Action of natural and synthetic antioxidants on the electrical parameters and stability of natural and artificial membranes].
    Ivanov II; Korolev NP; Semin BK; Lap V; Wunderlich Z
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1986; (5):35-40. PubMed ID: 3730453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering membrane insertion of the diphtheria toxin T domain by specular neutron reflectometry and solid-state NMR spectroscopy.
    Chenal A; Prongidi-Fix L; Perier A; Aisenbrey C; Vernier G; Lambotte S; Haertlein M; Dauvergne MT; Fragneto G; Bechinger B; Gillet D; Forge V; Ferrand M
    J Mol Biol; 2009 Sep; 391(5):872-83. PubMed ID: 19576225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface.
    Voglino L; McIntosh TJ; Simon SA
    Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positioning of antioxidant quercetin and its metabolites in lipid bilayer membranes: implication for their lipid-peroxidation inhibition.
    Košinová P; Berka K; Wykes M; Otyepka M; Trouillas P
    J Phys Chem B; 2012 Feb; 116(4):1309-18. PubMed ID: 22201287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of flavonoids with 1,1-diphenyl-2-picrylhydrazyl free radical, liposomal membranes and soybean lipoxygenase-1.
    Ratty AK; Sunamoto J; Das NP
    Biochem Pharmacol; 1988 Mar; 37(6):989-95. PubMed ID: 3128297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isaxonine base is a strong perturber of phospholipid bilayer order and fluidity--a differential scanning calorimetry and spin labeling study.
    Berleur F; Roman V; Jaskierowicz D; Leterrier F; Esanu A; Braquet P; ter-Minassian-Saraga L; Madelmont G
    Biochem Pharmacol; 1984 Aug; 33(15):2407-17. PubMed ID: 6087826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examining the contributions of lipid shape and headgroup charge on bilayer behavior.
    Dickey A; Faller R
    Biophys J; 2008 Sep; 95(6):2636-46. PubMed ID: 18515396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of liposomes to evaluate the role of membrane interactions on antioxidant activity.
    Reis S; Lúcio M; Segundo M; Lima JL
    Methods Mol Biol; 2010; 606():167-88. PubMed ID: 20013397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction of flavonoids with membranes: potential determinant of flavonoid antioxidant effects.
    Erlejman AG; Verstraeten SV; Fraga CG; Oteiza PI
    Free Radic Res; 2004 Dec; 38(12):1311-20. PubMed ID: 15763955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.