BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11000550)

  • 21. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.
    Nogueira DR; Mitjans M; Busquets MA; Pérez L; Vinardell MP
    Langmuir; 2012 Aug; 28(32):11687-98. PubMed ID: 22816661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidation-dependent changes in the stability and permeability of lipid bilayers.
    Anzai K; Ogawa K; Goto Y; Senzaki Y; Ozawa T; Yamamoto H
    Antioxid Redox Signal; 1999; 1(3):339-47. PubMed ID: 11229445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
    Li W; Nicol F; Szoka FC
    Adv Drug Deliv Rev; 2004 Apr; 56(7):967-85. PubMed ID: 15066755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elastic deformation of membrane bilayers probed by deuterium NMR relaxation.
    Brown MF; Thurmond RL; Dodd SW; Otten D; Beyer K
    J Am Chem Soc; 2002 Jul; 124(28):8471-84. PubMed ID: 12105929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of flavonoid--biomembrane interactions.
    Ollila F; Halling K; Vuorela P; Vuorela H; Slotte JP
    Arch Biochem Biophys; 2002 Mar; 399(1):103-8. PubMed ID: 11883909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular interactions and physico-chemical characterization of quercetin-loaded magnetoliposomes.
    Cruz Dos Santos S; Osti Silva N; Dos Santos Espinelli JB; Germani Marinho MA; Vieira Borges Z; Bruzamarello Caon Branco N; Faita FL; Meira Soares B; Horn AP; Parize AL; Rodrigues de Lima V
    Chem Phys Lipids; 2019 Jan; 218():22-33. PubMed ID: 30508514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of flavonoid structure on the fluidity of model lipid membranes.
    Abram V; Berlec B; Ota A; Šentjurc M; Blatnik P; Ulrih NP
    Food Chem; 2013 Aug; 139(1-4):804-13. PubMed ID: 23561176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Profile of changes in lipid bilayer structure caused by beta-amyloid peptide.
    Kremer JJ; Sklansky DJ; Murphy RM
    Biochemistry; 2001 Jul; 40(29):8563-71. PubMed ID: 11456496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigations on membrane perturbation by chrysin and its copper complex using self-assembled lipid bilayers.
    Selvaraj S; Krishnaswamy S; Devashya V; Sethuraman S; Krishnan UM
    Langmuir; 2011 Nov; 27(21):13374-82. PubMed ID: 21923196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the interaction of ionic detergents with lipid membranes. Thermodynamic comparison of n-alkyl-+N(CH₃)₃ and n-alkyl-SO₄⁻.
    Beck A; Li-Blatter X; Seelig A; Seelig J
    J Phys Chem B; 2010 Dec; 114(48):15862-71. PubMed ID: 21067191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ESR and monolayer study of the localization of coenzyme Q10 in artificial membranes.
    Grzybek M; Stebelska K; Wyrozumska P; Grieb P; Langner M; Jaszewski A; Jezierski A; Sikorski AF
    Gen Physiol Biophys; 2005 Dec; 24(4):449-60. PubMed ID: 16474188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers.
    Barry JA; Gawrisch K
    Biochemistry; 1994 Jul; 33(26):8082-8. PubMed ID: 8025114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid bilayer reorganization under extreme pH conditions.
    Goertz MP; Goyal N; Montano GA; Bunker BC
    Langmuir; 2011 May; 27(9):5481-91. PubMed ID: 21462990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid Interactions and Organization in Complex Bilayer Membranes.
    Engberg O; Yasuda T; Hautala V; Matsumori N; Nyholm TKM; Murata M; Slotte JP
    Biophys J; 2016 Apr; 110(7):1563-1573. PubMed ID: 27074681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of the neuropeptide met-enkephalin with zwitterionic and negatively charged bicelles as viewed by 31P and 2H solid-state NMR.
    Marcotte I; Dufourc EJ; Ouellet M; Auger M
    Biophys J; 2003 Jul; 85(1):328-39. PubMed ID: 12829487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane dipole modifiers modulate single-length nystatin channels via reducing elastic stress in the vicinity of the lipid mouth of a pore.
    Chulkov EG; Schagina LV; Ostroumova OS
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):192-9. PubMed ID: 25223717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances on nanoformulation approaches for delivering plant-derived antioxidants: A case of quercetin.
    Rathod S; Arya S; Kanike S; Shah SA; Bahadur P; Tiwari S
    Int J Pharm; 2022 Sep; 625():122093. PubMed ID: 35952801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binding of a Myristoylated Protein to the Lipid Membrane Influenced by Interactions with the Polar Head Group Region.
    Brand I; Matyszewska D; Koch KW
    Langmuir; 2018 Nov; 34(46):14022-14032. PubMed ID: 30360613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DIPOLE-MODIFYING EFFECT OF STYRYLPYRIDINIUM DYES AND FLAVONOIDS ON THE MODEL MEMBRANES OF DIFFERENT LIPID COMPOSITIONS.
    Efimova SS; Schagina LV; Ostroumova OS
    Tsitologiia; 2017; 59(3):229-35. PubMed ID: 30183188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase separation induced by melittin in negatively-charged phospholipid bilayers as detected by fluorescence polarization and differential scanning calorimetry.
    Bernard E; Faucon JF; Dufourcq J
    Biochim Biophys Acta; 1982 May; 688(1):152-62. PubMed ID: 7093270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.