These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1100099)

  • 41. Melting of Saccharomyces cerevisiae 5S ribonucleic acid: ultraviolet absorption, circular dichroism, and 360-MHz proton nuclear magnetic resonance spectroscopy.
    Luoma GA; Burns PD; Bruce RE; Marshall AG
    Biochemistry; 1980 Nov; 19(23):5456-62. PubMed ID: 7004487
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA.
    Auxilien S; Crain PF; Trewyn RW; Grosjean H
    J Mol Biol; 1996 Oct; 262(4):437-58. PubMed ID: 8893855
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bisulfite-induced C changed to U transitions in yeast valine tRNA.
    Bhanot OS; Aoyagi S; Chambers RW
    J Biol Chem; 1977 Apr; 252(8):2566-74. PubMed ID: 404293
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-resolution phosphorus nuclear magnetic resonance spectra of yeast phenylalanine transfer ribonucleic acid. Melting curves and relaxation effects.
    Gorenstein DG; Luxon BA
    Biochemistry; 1979 Aug; 18(17):3796-804. PubMed ID: 383146
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High resolution phosphorus NMR spectroscopy of transfer ribonucleic acids.
    Gorenstein DG; Goldfield EM
    Mol Cell Biochem; 1982 Jul; 46(2):97-120. PubMed ID: 6180293
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spectroscopic properties of oligonucleotides excised from the anticodon region of phenylalanine tRNA from yeast.
    Maelicke A; von der Haar F; Cramer F
    Biopolymers; 1973; 12(1):27-43. PubMed ID: 4568933
    [No Abstract]   [Full Text] [Related]  

  • 47. Luminescence and binding studies on tRNA-Phe.
    Eisinger J; Feuer B; Yamane T
    Proc Natl Acad Sci U S A; 1970 Mar; 65(3):638-44. PubMed ID: 5267144
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lack of 2'-O-methylation in the tRNA anticodon loop of two phylogenetically distant yeast species activates the general amino acid control pathway.
    Han L; Guy MP; Kon Y; Phizicky EM
    PLoS Genet; 2018 Mar; 14(3):e1007288. PubMed ID: 29596413
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Topological arrangement of two transfer RNAs on the ribosome. Fluorescence energy transfer measurements between A and P site-bound tRNAphe.
    Paulsen H; Robertson JM; Wintermeyer W
    J Mol Biol; 1983 Jun; 167(2):411-26. PubMed ID: 6345795
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The conformation of the anticodon loop of yeast tRNAPhe in solution and on ribosomes.
    Odom OW; Craig BB; Hardesty BA
    Biopolymers; 1978 Dec; 17(12):2909-31. PubMed ID: 365255
    [No Abstract]   [Full Text] [Related]  

  • 51. Mechanism of codon recognition by transfer RNA studied with oligonucleotides larger than triplets.
    Labuda D; Striker G; Grosjean H; Porschke D
    Nucleic Acids Res; 1985 May; 13(10):3667-83. PubMed ID: 4011439
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Specific interaction of anticodon loop residues with yeast phenylalanyl-tRNA synthetase.
    Bruce AG; Uhlenbeck OC
    Biochemistry; 1982 Aug; 21(17):3921-6. PubMed ID: 6751381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluorescence-detected circular dichroism of ethidium bound to poly(dG-dC) and poly(dG-m5dC) under B- and Z-form conditions.
    Lamos ML; Walker GT; Krugh TR; Turner DH
    Biochemistry; 1986 Feb; 25(3):687-91. PubMed ID: 3955024
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contributions to selective binding of aromatic amino acid residues to tRNA(Phe).
    Bujalowski W; Porschke D
    Biophys Chem; 1988 Jun; 30(2):151-7. PubMed ID: 3416041
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unfolding of yeast transfer ribonucleic acid species caused by addition of organic solvents and studied by circular dichroism.
    Prinz H; Maelicke A; Cramer F
    Biochemistry; 1974 Mar; 13(7):1322-6. PubMed ID: 4594759
    [No Abstract]   [Full Text] [Related]  

  • 56. High resolution NMR study of the melting of yeast tRNA Phe.
    Hilbers CW; Shulman RG; Kim SH
    Biochem Biophys Res Commun; 1973 Dec; 55(3):953-60. PubMed ID: 4586623
    [No Abstract]   [Full Text] [Related]  

  • 57. Calorimetric studies on melting of tRNA Phe (yeast).
    Hinz HJ; Filimonov VV; Privalov PL
    Eur J Biochem; 1977 Jan; 72(1):79-86. PubMed ID: 319003
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Circular dichroism study of the interaction of glutamyl-tRNA synthetase with tRNAGlu2.
    Willick GE; Kay CM
    Biochemistry; 1976 Sep; 15(19):4347-52. PubMed ID: 786370
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The kinetics of binding of U-U-C-A to a dodecanucleotide anticodon fragment from yeast tRNA-Phe.
    Yoon K; Turner DH; Tinoco I; Haar F; Cramer F
    Nucleic Acids Res; 1976 Sep; 3(9):2233-41. PubMed ID: 787934
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A nuclear magnetic resonance study of secondary and tertiary structure in yeast tRNAPhe.
    Robillard GT; Tarr CE; Vosman F; Reid BR
    Biochemistry; 1977 Nov; 16(24):5261-73. PubMed ID: 336084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.