These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11001166)

  • 1. Impaired carbon dioxide transport during and after cardiopulmonary bypass.
    Cavaliere F
    Perfusion; 2000 Sep; 15(5):433-9. PubMed ID: 11001166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the factors related to a decrease in jugular venous oxygen saturation in patients with diabetes mellitus during normothermic cardiopulmonary bypass.
    Miyoshi S; Morita T; Kadoi Y; Goto F
    Surg Today; 2005; 35(7):530-4. PubMed ID: 15976948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery from metabolic impairments after hypothermic cardiopulmonary bypass: postoperative changes in arterial-venous carbon dioxide tension difference.
    Utoh J; Moriyama S; Kitamura N; Okamoto K
    Ann Thorac Cardiovasc Surg; 1999 Feb; 5(1):27-30. PubMed ID: 10074565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arterio-venous gradients of free energy change for assessment of systemic and splanchnic perfusion in cardiac surgery patients.
    Braun JP; Jakob SM; Volk T; Doepfmer UR; Moshirzadeh M; Stegmann S; Dohmen PM; Spies C
    Perfusion; 2006 Nov; 21(6):353-60. PubMed ID: 17312859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous Metabolic Monitoring in Infant Cardiac Surgery: Toward an Individualized Cardiopulmonary Bypass Strategy.
    Torre S; Biondani E; Menon T; Marchi D; Franzoi M; Ferrarini D; Tabbì R; Hoxha S; Barozzi L; Faggian G; Luciani GB
    Artif Organs; 2016 Jan; 40(1):65-72. PubMed ID: 26582421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygenator exhaust capnography for prediction of arterial carbon dioxide tension during hypothermic cardiopulmonary bypass.
    Baraka A; El-Khatib M; Muallem E; Jamal S; Haroun-Bizri S; Aouad M
    J Extra Corpor Technol; 2005 Jun; 37(2):192-5. PubMed ID: 16117458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utility of cerebral oxymetry for assessing cerebral arteriolar carbon dioxide reactivity during cardiopulmonary bypass.
    Ariturk C; Okten M; Ozgen ZS; Erkek E; Uysal P; Gullu U; Senay S; Karabulut H; Alhan C; Toraman F
    Heart Surg Forum; 2014 Jun; 17(3):E169-72. PubMed ID: 25002395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residual air in the venous cannula increases cerebral embolization at the onset of cardiopulmonary bypass.
    Rodriguez RA; Rubens F; Belway D; Nathan HJ
    Eur J Cardiothorac Surg; 2006 Feb; 29(2):175-80. PubMed ID: 16376562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic metabolism during cardiopulmonary bypass: predictive value of carbon dioxide derived parameters.
    Ranucci M; Isgrò G; Romitti F; Mele S; Biagioli B; Giomarelli P
    Ann Thorac Surg; 2006 Jun; 81(6):2189-95. PubMed ID: 16731152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed venous-arterial CO2 tension gradient after cardiopulmonary bypass.
    Takami Y; Masumoto H
    Asian Cardiovasc Thorac Ann; 2005 Sep; 13(3):255-60. PubMed ID: 16113000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Arterial-venous carbon dioxide tension difference after hypothermic cardiopulmonary bypass].
    Utoh J; Moriyama S; Goto H; Hirata T; Kunitomo R; Hara M; Kitamura N
    Nihon Kyobu Geka Gakkai Zasshi; 1997 May; 45(5):679-81. PubMed ID: 9170857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in serum S100beta protein and Mini-Mental State Examination after cold (28 degrees C) and warm (34 degrees C) cardiopulmonary bypass using different blood gas strategies (alpha-stat and pH-stat).
    Shaaban-Ali M; Harmer M; Vaughan RS; Dunne JA; Latto IP; Haaverstad R; Kulatilake EN; Butchart EG
    Acta Anaesthesiol Scand; 2002 Jan; 46(1):10-6. PubMed ID: 11903066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-related differences in mean expired pump and arterial carbon dioxide in patients undergoing cardiopulmonary bypass.
    Peng YG; Morey TE; Clark D; Forthofer MD; Gravenstein N; Janelle GM
    J Cardiothorac Vasc Anesth; 2007 Feb; 21(1):57-60. PubMed ID: 17289481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen consumption, carbon dioxide production and lactic acid during normothermic cardiopulmonary bypass.
    Engoren M; Evans M
    Perfusion; 2000 Sep; 15(5):441-6. PubMed ID: 11001167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal Sweep Gas to Blood Flow Ratio (V/Q) for Initiation of Cardiopulmonary Bypass in a Pediatric Patient Population: A Retrospective Analysis.
    Clingan SP; Reagor JA; Ollberding NJ
    J Extra Corpor Technol; 2020 Jun; 52(2):112-117. PubMed ID: 32669737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arterial-venous PCO2 gradient in early postoperative hours following myocardial revascularization.
    Cavaliere F; Martinelli L; Guarneri S; Varano C; Rossi M; Schiavello R
    J Cardiovasc Surg (Torino); 1996 Oct; 37(5):499-503. PubMed ID: 8941692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute normovolaemic haemodilution does not aggravate gastric mucosal acidosis during cardiac surgery.
    Bacher A; Mayer N; Rajek AM; Haider W
    Intensive Care Med; 1998 Apr; 24(4):313-21. PubMed ID: 9609408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Femoral to radial artery pressure gradient in the patients undergoing coronary artery bypass graft under normothermic cardiopulmonary bypass].
    Zhao J; Ishida K; Nandate K; Shimabukuro T; Shinohara K; Seo K
    Masui; 1997 Sep; 46(9):1235-41. PubMed ID: 9311218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring of blood gases during prolonged experimental cardiopulmonary bypass and their relationship to brain pH, PO2, and PCO2.
    Briceno JC; Runge TM
    ASAIO J; 1994; 40(3):M344-50. PubMed ID: 8555537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic acidosis developing during cardiopulmonary bypass is related to a decrease in strong ion difference.
    Alston RP; Cormack L; Collinson C
    Perfusion; 2004 May; 19(3):145-52. PubMed ID: 15298421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.