These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 11001537)

  • 1. Methane production and release from two New England peatlands.
    Duval B; Goodwin S
    Int Microbiol; 2000 Jun; 3(2):89-95. PubMed ID: 11001537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.
    Reumer M; Harnisz M; Lee HJ; Reim A; Grunert O; Putkinen A; Fritze H; Bodelier PLE; Ho A
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microform-related community patterns of methane-cycling microbes in boreal Sphagnum bogs are site specific.
    Juottonen H; Kotiaho M; Robinson D; Merilä P; Fritze H; Tuittila ES
    FEMS Microbiol Ecol; 2015 Sep; 91(9):fiv094. PubMed ID: 26220310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog.
    Kotsyurbenko OR; Chin KJ; Glagolev MV; Stubner S; Simankova MV; Nozhevnikova AN; Conrad R
    Environ Microbiol; 2004 Nov; 6(11):1159-73. PubMed ID: 15479249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Activity and metabolic regulation of methane production in deep peat profiles of boreal bogs].
    Kravchenko IK; Sirin AA
    Mikrobiologiia; 2007; 76(6):888-95. PubMed ID: 18297882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of a novel acidiphilic methanogen from an acidic peat bog.
    Bräuer SL; Cadillo-Quiroz H; Yashiro E; Yavitt JB; Zinder SH
    Nature; 2006 Jul; 442(7099):192-4. PubMed ID: 16699521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain.
    Kotsyurbenko OR; Friedrich MW; Simankova MV; Nozhevnikova AN; Golyshin PN; Timmis KN; Conrad R
    Appl Environ Microbiol; 2007 Apr; 73(7):2344-8. PubMed ID: 17277200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane production in Minnesota peatlands.
    Williams RT; Crawford RL
    Appl Environ Microbiol; 1984 Jun; 47(6):1266-71. PubMed ID: 16346565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA.
    Cadillo-Quiroz H; Bräuer S; Yashiro E; Sun C; Yavitt J; Zinder S
    Environ Microbiol; 2006 Aug; 8(8):1428-40. PubMed ID: 16872405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats.
    Blodau C; Siems M; Beer J
    Environ Sci Technol; 2011 Dec; 45(23):9984-9. PubMed ID: 21958021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Methanotrophic bacteria of acid sphagnum bogs].
    Dedysh SN
    Mikrobiologiia; 2002; 71(6):741-54. PubMed ID: 12526194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental factors influencing methanogenesis in a shallow anoxic aquifer: a field and laboratory study.
    Beeman RE; Suflita JM
    J Ind Microbiol; 1990 Jan; 5(1):45-57. PubMed ID: 1366376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands.
    Turetsky MR; Kotowska A; Bubier J; Dise NB; Crill P; Hornibrook ER; Minkkinen K; Moore TR; Myers-Smith IH; Nykänen H; Olefeldt D; Rinne J; Saarnio S; Shurpali N; Tuittila ES; Waddington JM; White JR; Wickland KP; Wilmking M
    Glob Chang Biol; 2014 Jul; 20(7):2183-97. PubMed ID: 24777536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic trophic interactions of contrasting methane-emitting mire soils: processes versus taxa.
    Hunger S; Gößner AS; Drake HL
    FEMS Microbiol Ecol; 2015 May; 91(5):. PubMed ID: 25877342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biogeochemical processes of methane cycle in the soils, swamps and lakes of Western Siberia].
    Gal'chenko VF; Dulov LE; Cramer B; Konova NI; Barysheva SV
    Mikrobiologiia; 2001; 70(2):215-25. PubMed ID: 11386054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial community composition and in silico predicted metabolic potential reflect biogeochemical gradients between distinct peatland types.
    Urbanová Z; Bárta J
    FEMS Microbiol Ecol; 2014 Dec; 90(3):633-46. PubMed ID: 25195805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental controls on the abundance of methanotrophs and methanogens in peat bog lakes.
    Lew S; Glińska-Lewczuk K
    Sci Total Environ; 2018 Dec; 645():1201-1211. PubMed ID: 30248845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog.
    Freitag TE; Toet S; Ineson P; Prosser JI
    FEMS Microbiol Ecol; 2010 Jul; 73(1):157-65. PubMed ID: 20455935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of salinity on methanogenesis and associated microflora in tropical rice soils.
    Pattnaik P; Mishra SR; Bharati K; Mohanty SR; Sethunathan N; Adhya TK
    Microbiol Res; 2000 Sep; 155(3):215-20. PubMed ID: 11061190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.