BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11001770)

  • 1. Impaired dilation of coronary arterioles during increases in myocardial O(2) consumption with hyperglycemia.
    Ammar RF; Gutterman DD; Brooks LA; Dellsperger KC
    Am J Physiol Endocrinol Metab; 2000 Oct; 279(4):E868-74. PubMed ID: 11001770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of coronary microvascular responses to metabolic stimulation.
    Embrey RP; Brooks LA; Dellsperger KC
    Cardiovasc Res; 1997 Jul; 35(1):148-57. PubMed ID: 9302359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathophysiological plasma ET-1 levels antagonize beta-adrenergic dilation of coronary resistance vessels in conscious dogs.
    Okajima M; Parent R; Thorin E; Lavallée M
    Am J Physiol Heart Circ Physiol; 2004 Oct; 287(4):H1476-83. PubMed ID: 15205173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Important role of endogenous hydrogen peroxide in pacing-induced metabolic coronary vasodilation in dogs in vivo.
    Yada T; Shimokawa H; Hiramatsu O; Shinozaki Y; Mori H; Goto M; Ogasawara Y; Kajiya F
    J Am Coll Cardiol; 2007 Sep; 50(13):1272-8. PubMed ID: 17888845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of nitric oxide in the coupling of myocardial oxygen consumption and coronary vascular dynamics during pregnancy in the dog.
    Williams JG; Rincon-Skinner T; Sun D; Wang Z; Zhang S; Zhang X; Hintze TH
    Am J Physiol Heart Circ Physiol; 2007 Oct; 293(4):H2479-86. PubMed ID: 17644579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PAF attenuates endothelium-dependent coronary arteriolar vasodilation.
    DeFily DV; Kuo L; Chilian WM
    Am J Physiol; 1996 Jun; 270(6 Pt 2):H2094-9. PubMed ID: 8764261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free radicals mediate endothelial dysfunction of coronary arterioles in diabetes.
    Ammar RF; Gutterman DD; Brooks LA; Dellsperger KC
    Cardiovasc Res; 2000 Aug; 47(3):595-601. PubMed ID: 10963732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of pertussis toxin-sensitive G protein in metabolic vasodilation of coronary microcirculation.
    Tanikawa T; Kanatsuka H; Koshida R; Tanaka M; Sugimura A; Kumagai T; Miura M; Komaru T; Shirato K
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1819-29. PubMed ID: 11009469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coronary microvascular responses to reductions in perfusion pressure. Evidence for persistent arteriolar vasomotor tone during coronary hypoperfusion.
    Chilian WM; Layne SM
    Circ Res; 1990 May; 66(5):1227-38. PubMed ID: 2335023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand.
    Jones CJ; Kuo L; Davis MJ; DeFily DV; Chilian WM
    Circulation; 1995 Mar; 91(6):1807-13. PubMed ID: 7882491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preconditioning protects coronary arteriolar endothelium from ischemia-reperfusion injury.
    DeFily DV; Chilian WM
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H700-6. PubMed ID: 8368371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased superoxide production causes coronary endothelial dysfunction and depressed oxygen consumption in the failing heart.
    Chen Y; Hou M; Li Y; Traverse JH; Zhang P; Salvemini D; Fukai T; Bache RJ
    Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H133-41. PubMed ID: 15598865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelin-1 impairs coronary arteriolar dilation: Role of p38 kinase-mediated superoxide production from NADPH oxidase.
    Thengchaisri N; Hein TW; Ren Y; Kuo L
    J Mol Cell Cardiol; 2015 Sep; 86():75-84. PubMed ID: 26211713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelium-derived nitric oxide enhances the effect of intraaortic balloon pumping on diastolic coronary flow.
    Toyota E; Goto M; Nakamoto H; Ebata J; Tachibana H; Hiramatsu O; Ogasawara Y; Kajiya F
    Ann Thorac Surg; 1999 May; 67(5):1254-61. PubMed ID: 10355392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of exercise training on nitric oxide and superoxide/H₂O₂ signaling pathways in collateral-dependent porcine coronary arterioles.
    Xie W; Parker JL; Heaps CL
    J Appl Physiol (1985); 2012 May; 112(9):1546-55. PubMed ID: 22323648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Norepinephrine elicits beta2-receptor-mediated dilation of isolated human coronary arterioles.
    Sun D; Huang A; Mital S; Kichuk MR; Marboe CC; Addonizio LJ; Michler RE; Koller A; Hintze TH; Kaley G
    Circulation; 2002 Jul; 106(5):550-5. PubMed ID: 12147535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High glucose impairs EDHF-mediated dilation of coronary arterioles via reduced cytochrome P450 activity.
    Tsai SH; Hein TW; Kuo L; Yang VC
    Microvasc Res; 2011 Nov; 82(3):356-63. PubMed ID: 21983453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo and in vitro vasoactive reactions of coronary arteriolar microvessels to nitroglycerin.
    Jones CJ; Kuo L; Davis MJ; Chilian WM
    Am J Physiol; 1996 Aug; 271(2 Pt 2):H461-8. PubMed ID: 8770085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of impaired responses of cerebral arterioles during diabetes mellitus.
    Mayhan WG; Simmons LK; Sharpe GM
    Am J Physiol; 1991 Feb; 260(2 Pt 2):H319-26. PubMed ID: 1825454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.