BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 11001840)

  • 1. Sources of and solutions to problems in the refinement of protein NMR structures against torsion angle potentials of mean force.
    Kuszewski J; Clore GM
    J Magn Reson; 2000 Oct; 146(2):249-54. PubMed ID: 11001840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refinement of NMR structures using implicit solvent and advanced sampling techniques.
    Chen J; Im W; Brooks CL
    J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refinement of NMR-determined protein structures with database derived mean-force potentials.
    Wu D; Jernigan R; Wu Z
    Proteins; 2007 Jul; 68(1):232-42. PubMed ID: 17387736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the accuracy of NMR structures of RNA by means of conformational database potentials of mean force as assessed by complete dipolar coupling cross-validation.
    Clore GM; Kuszewski J
    J Am Chem Soc; 2003 Feb; 125(6):1518-25. PubMed ID: 12568611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of torsion angle molecular dynamics for efficient sampling of protein conformations.
    Chen J; Im W; Brooks CL
    J Comput Chem; 2005 Nov; 26(15):1565-78. PubMed ID: 16145655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation.
    Stein EG; Rice LM; Brünger AT
    J Magn Reson; 1997 Jan; 124(1):154-64. PubMed ID: 9424305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate prediction of protein torsion angles using chemical shifts and sequence homology.
    Neal S; Berjanskii M; Zhang H; Wishart DS
    Magn Reson Chem; 2006 Jul; 44 Spec No():S158-67. PubMed ID: 16823900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiable, multi-dimensional, knowledge-based energy terms for torsion angle probabilities and propensities.
    Amir ED; Kalisman N; Keasar C
    Proteins; 2008 Jul; 72(1):62-73. PubMed ID: 18186478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR structures of proteins and protein complexes beyond 20,000 M(r).
    Clore GM; Gronenborn AM
    Nat Struct Biol; 1997 Oct; 4 Suppl():849-53. PubMed ID: 9377157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TOUCHSTONEX: protein structure prediction with sparse NMR data.
    Li W; Zhang Y; Kihara D; Huang YJ; Zheng D; Montelione GT; Kolinski A; Skolnick J
    Proteins; 2003 Nov; 53(2):290-306. PubMed ID: 14517980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated protein structure determination from NMR spectra.
    López-Méndez B; Güntert P
    J Am Chem Soc; 2006 Oct; 128(40):13112-22. PubMed ID: 17017791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An empirical backbone-backbone hydrogen-bonding potential in proteins and its applications to NMR structure refinement and validation.
    Grishaev A; Bax A
    J Am Chem Soc; 2004 Jun; 126(23):7281-92. PubMed ID: 15186165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics.
    Yu N; Yennawar HP; Merz KM
    Acta Crystallogr D Biol Crystallogr; 2005 Mar; 61(Pt 3):322-32. PubMed ID: 15735343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin.
    Zech SG; Wand AJ; McDermott AE
    J Am Chem Soc; 2005 Jun; 127(24):8618-26. PubMed ID: 15954766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases.
    Kuszewski J; Gronenborn AM; Clore GM
    Protein Sci; 1996 Jun; 5(6):1067-80. PubMed ID: 8762138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GENFOLD: a genetic algorithm for folding protein structures using NMR restraints.
    Bayley MJ; Jones G; Willett P; Williamson MP
    Protein Sci; 1998 Feb; 7(2):491-9. PubMed ID: 9521126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backbone conformational constraints in a microcrystalline U-15N-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy.
    Franks WT; Wylie BJ; Stellfox SA; Rienstra CM
    J Am Chem Soc; 2006 Mar; 128(10):3154-5. PubMed ID: 16522090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data.
    Kitao A; Wagner G
    Magn Reson Chem; 2006 Jul; 44 Spec No():S130-42. PubMed ID: 16823895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Side-chains in native and random coil protein conformations. Analysis of NMR coupling constants and chi1 torsion angle preferences.
    West NJ; Smith LJ
    J Mol Biol; 1998 Jul; 280(5):867-77. PubMed ID: 9671556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.