BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11001951)

  • 1. The activity of the ATP synthase from Escherichia coli is regulated by the transmembrane proton motive force.
    Fischer S; Graber P; Turina P
    J Biol Chem; 2000 Sep; 275(39):30157-62. PubMed ID: 11001951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 2. Relationships between proton motive force and ATP synthesis.
    Pitard B; Richard P; Duñach M; Rigaud JL
    Eur J Biochem; 1996 Feb; 235(3):779-88. PubMed ID: 8654429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of DeltapH- and Delta***φ***-driven ATP synthesis catalyzed by the H(+)-ATPases from Escherichia coli or chloroplasts reconstituted into liposomes.
    Fischer S; Gräber P
    FEBS Lett; 1999 Sep; 457(3):327-32. PubMed ID: 10471802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP synthesis catalyzed by the ATP synthase of Escherichia coli reconstituted into liposomes.
    Fischer S; Etzold C; Turina P; Deckers-Hebestreit G; Altendorf K; Gräber P
    Eur J Biochem; 1994 Oct; 225(1):167-72. PubMed ID: 7925434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-F
    Lapashina AS; Shugaeva TE; Berezina KM; Kholina TD; Feniouk BA
    Biochemistry (Mosc); 2019 Apr; 84(4):407-415. PubMed ID: 31228932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfect chemomechanical coupling of F
    Soga N; Kimura K; Kinosita K; Yoshida M; Suzuki T
    Proc Natl Acad Sci U S A; 2017 May; 114(19):4960-4965. PubMed ID: 28442567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H+/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF0F1-liposomes.
    Turina P; Samoray D; Gräber P
    EMBO J; 2003 Feb; 22(3):418-26. PubMed ID: 12554643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of the intrinsic uncoupling modulated by ADP and P(i) in the reconstituted ATP synthase of Escherichia coli.
    D'Alessandro M; Turina P; Melandri BA
    Biochim Biophys Acta; 2011 Jan; 1807(1):130-43. PubMed ID: 20800570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The thermodynamic H+/ATP ratios of the H+-ATPsynthases from chloroplasts and Escherichia coli.
    Steigmiller S; Turina P; Gräber P
    Proc Natl Acad Sci U S A; 2008 Mar; 105(10):3745-50. PubMed ID: 18316723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton transport coupled ATP synthesis by the purified yeast H+ -ATP synthase in proteoliposomes.
    Förster K; Turina P; Drepper F; Haehnel W; Fischer S; Gräber P; Petersen J
    Biochim Biophys Acta; 2010 Nov; 1797(11):1828-37. PubMed ID: 20691145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADP binding and ATP synthesis by reconstituted H(+)-ATPase from chloroplasts.
    Creczynski-Pasa TB; Gräber P
    FEBS Lett; 1994 Aug; 350(2-3):195-8. PubMed ID: 8070563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory interplay between proton motive force, ADP, phosphate, and subunit epsilon in bacterial ATP synthase.
    Feniouk BA; Suzuki T; Yoshida M
    J Biol Chem; 2007 Jan; 282(1):764-72. PubMed ID: 17092944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the H(+)-ATP synthase in the photosynthetic bacterium Rhodobacter capsulatus.
    Turina P; Rumberg B; Melandri BA; Gräber P
    J Biol Chem; 1992 Jun; 267(16):11057-63. PubMed ID: 1534558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. F0F1-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of epsilon subunit in response to proton motive force and ADP/ATP balance.
    Suzuki T; Murakami T; Iino R; Suzuki J; Ono S; Shirakihara Y; Yoshida M
    J Biol Chem; 2003 Nov; 278(47):46840-6. PubMed ID: 12881515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ADP-Inhibition of H+-F
    Lapashina AS; Feniouk BA
    Biochemistry (Mosc); 2018 Oct; 83(10):1141-1160. PubMed ID: 30472953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent modification of the catalytic sites of the H(+)-ATPase from chloroplasts, CF(0)F(1), with 2-azido-[alpha-(32)P]ADP: modification of the catalytic site 2 (loose) and the catalytic site 3 (open) impairs multi-site, but not uni-site catalysis of both ATP synthesis and ATP hydrolysis.
    Possmayer FE; Hartog AF; Berden JA; Gräber P
    Biochim Biophys Acta; 2000 Jan; 1456(2-3):77-98. PubMed ID: 10627297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex.
    Deckers-Hebestreit G; Altendorf K
    Annu Rev Microbiol; 1996; 50():791-824. PubMed ID: 8905099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of proton pumping efficiency in bacterial ATP synthases.
    Turina P; Rebecchi A; D'Alessandro M; Anefors S; Melandri BA
    Biochim Biophys Acta; 2006; 1757(5-6):320-5. PubMed ID: 16765908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of the clathrin-coated vesicle V-ATPase with ADP and sodium azide.
    Vasilyeva E; Forgac M
    J Biol Chem; 1998 Sep; 273(37):23823-9. PubMed ID: 9726993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.