These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11002886)

  • 1. Reduction and activation of phosphate on the primitive earth.
    De Graaf RM; Schwartz AW
    Orig Life Evol Biosph; 2000 Oct; 30(5):405-10. PubMed ID: 11002886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical reduction of phosphate on the primitive earth.
    Glindemann D; De Graaf RM; Schwartz AW
    Orig Life Evol Biosph; 1999 Dec; 29(6):555-61. PubMed ID: 10666740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volcanic production of polyphosphates and its relevance to prebiotic evolution.
    Yamagata Y; Watanabe H; Saitoh M; Namba T
    Nature; 1991 Aug; 352(6335):516-9. PubMed ID: 11536483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds.
    Miller SL; Schlesinger G
    Adv Space Res; 1983; 3(9):47-53. PubMed ID: 11542461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Prebiotic phosphate: a problem insoluble in water ? ].
    Morchio R; Traverso S
    Riv Biol; 2005; 98(1):18-23. PubMed ID: 15889337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus: a case for mineral-organic reactions in prebiotic chemistry.
    Pasek M; Herschy B; Kee TP
    Orig Life Evol Biosph; 2015 Jun; 45(1-2):207-18. PubMed ID: 25773584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geochemical Sources and Availability of Amidophosphates on the Early Earth.
    Gibard C; Gorrell IB; Jiménez EI; Kee TP; Pasek MA; Krishnamurthy R
    Angew Chem Int Ed Engl; 2019 Jun; 58(24):8151-8155. PubMed ID: 30989779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I. Amino acids.
    Schlesinger G; Miller SL
    J Mol Evol; 1983; 19(5):376-82. PubMed ID: 6417344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. II. Hydrogen cyanide, formaldehyde and ammonia.
    Schlesinger G; Miller SL
    J Mol Evol; 1983; 19(5):383-90. PubMed ID: 6315963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current status of the prebiotic synthesis of small molecules.
    Miller SL
    Chem Scr; 1986; 26B():5-11. PubMed ID: 11542054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron- and Cyanide-Rich Early Earth Scenario.
    Burcar B; Castañeda A; Lago J; Daniel M; Pasek MA; Hud NV; Orlando TM; Menor-Salván C
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):16981-16987. PubMed ID: 31460687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prebiotic chemical refugia: multifaceted scenario for the formation of biomolecules in primitive Earth.
    Prosdocimi F; de Farias ST; José MV
    Theory Biosci; 2022 Nov; 141(4):339-347. PubMed ID: 36042123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary sources of phosphorus and phosphates in chemical evolution.
    Macia E; Hernandez MV; Oro J
    Orig Life Evol Biosph; 1997 Dec; 27(5-6):459-80. PubMed ID: 11536836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus in prebiotic chemistry.
    Schwartz AW
    Philos Trans R Soc Lond B Biol Sci; 2006 Oct; 361(1474):1743-9; discussion 1749. PubMed ID: 17008215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative assay of biologically important compounds in simulated primitive Earth experiments.
    Honda Y; Navarro-González R; Ponnamperuma C
    Adv Space Res; 1989; 9(6):63-6. PubMed ID: 11537375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine phosphate availability and the chemical origins of life on Earth.
    Brady MP; Tostevin R; Tosca NJ
    Nat Commun; 2022 Sep; 13(1):5162. PubMed ID: 36056017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermodynamic assessment of the potential synthesis of condensed hydrocarbons during cooling and dilution of volcanic gases.
    Zolotov MY; Shock EL
    J Geophys Res; 2000 Jan; 105(B1):539-59. PubMed ID: 11543291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemistry of CO and H2O: analysis of laboratory experiments and applications to the prebiotic Earth's atmosphere.
    Wen JS; Pinto JP; Yung YL
    J Geophys Res; 1989 Oct; 94(D12):14957-70. PubMed ID: 11538864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth.
    Pasek MA; Lauretta DS
    Astrobiology; 2005 Aug; 5(4):515-35. PubMed ID: 16078869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.