These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11003539)

  • 1. Molecular coherent scattering data for tissue in photon transport Monte Carlo codes.
    Tartari A; Bonifazzi C; Fernandez JE; Bastiano M; Casnati E; Baraldi C; Di Domenico G
    Appl Radiat Isot; 2000; 53(4-5):901-6. PubMed ID: 11003539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Updating of form factor tabulations for coherent scattering of photons in tissues.
    Tartari A; Taibi A; Bonifazz C; Baraldi C
    Phys Med Biol; 2002 Jan; 47(1):163-75. PubMed ID: 11814224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of low-angle x-ray scattering from some biological samples.
    Elshemey WM; Elsayed AA; El-Lakkani A
    Phys Med Biol; 1999 Dec; 44(12):2907-15. PubMed ID: 10616144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of dose distributions from a synchrotron-produced microplanar beam array using the EGS4 code system.
    Orion I; Rosenfeld AB; Dilmanian FA; Telang F; Ren B; Namito Y
    Phys Med Biol; 2000 Sep; 45(9):2497-508. PubMed ID: 11008951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of optical scanned images of inhomogeneities in biological tissues by Monte Carlo simulation.
    Jeeva JB; Singh M
    Comput Biol Med; 2015 May; 60():92-9. PubMed ID: 25770705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy.
    Autret D; Bitar A; Ferrer L; Lisbona A; Bardiès M
    Cancer Biother Radiopharm; 2005 Feb; 20(1):77-84. PubMed ID: 15778585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulations and analysis of transmitted gamma ray spectra through various tissue phantoms.
    Moradi F; Khandaker MU; Alrefae T; Ramazanian H; Bradley DA
    Appl Radiat Isot; 2019 Apr; 146():120-126. PubMed ID: 30769172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set.
    Keall PJ; Siebers JV; Libby B; Mohan R
    Med Phys; 2003 Apr; 30(4):574-82. PubMed ID: 12722809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.
    Yoriyaz H; Moralles M; Siqueira Pde T; Guimarães Cda C; Cintra FB; dos Santos A
    Med Phys; 2009 Nov; 36(11):5198-213. PubMed ID: 19994530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measured molecular coherent scattering form factors of animal tissues, plastics and human breast tissue.
    Peplow DE; Verghese K
    Phys Med Biol; 1998 Sep; 43(9):2431-52. PubMed ID: 9755937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiography simulation based on point-kernel model and dose buildup factors.
    Marinković P; Ilić R
    J Xray Sci Technol; 2009; 17(1):41-59. PubMed ID: 19644212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part I: Core algorithms and validation.
    Maslowski A; Wang A; Sun M; Wareing T; Davis I; Star-Lack J
    Med Phys; 2018 May; 45(5):1899-1913. PubMed ID: 29509970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations.
    Sempau J; Wilderman SJ; Bielajew AF
    Phys Med Biol; 2000 Aug; 45(8):2263-91. PubMed ID: 10958194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation of photon scattering in biological tissue models.
    Kumar D; Chacko S; Singh M
    Indian J Biochem Biophys; 1999 Oct; 36(5):330-6. PubMed ID: 10844984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of single Monte Carlo methods for prediction of reflectance from turbid media.
    Martinelli M; Gardner A; Cuccia D; Hayakawa C; Spanier J; Venugopalan V
    Opt Express; 2011 Sep; 19(20):19627-42. PubMed ID: 21996904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive data set to include interference effects in Monte Carlo models of x-ray coherent scattering inside biological tissues.
    Paternò G; Cardarelli P; Gambaccini M; Taibi A
    Phys Med Biol; 2020 Dec; 65(24):245002. PubMed ID: 32693398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo generated mammograms: development and validation.
    Spyrou G; Tzanakos G; Bakas A; Panayiotakis G
    Phys Med Biol; 1998 Nov; 43(11):3341-57. PubMed ID: 9832020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photon backscattering tissue characterization by energy dispersive spectroscopy evaluations.
    Tartari A; Casnati E; Fernandez JE; Felsteiner J; Baraldi C
    Phys Med Biol; 1994 Feb; 39(2):219-30. PubMed ID: 15552121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo modelling of external radiotherapy photon beams.
    Verhaegen F; Seuntjens J
    Phys Med Biol; 2003 Nov; 48(21):R107-64. PubMed ID: 14653555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.