These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 11003786)

  • 1. Hydrogen peroxide decelerates recovery of action potential after high-frequency fatigue in skeletal muscle.
    Oba T; Ishikawa T; Takaishi T; Aoki T; Yamaguchi M
    Muscle Nerve; 2000 Oct; 23(10):1515-24. PubMed ID: 11003786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold sodium thiomalate improves membrane potential impaired by high-frequency stimulation.
    Aoki T; Oba T
    Can J Physiol Pharmacol; 2004 Apr; 82(4):262-8. PubMed ID: 15181464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H2O2 activates ryanodine receptor but has little effect on recovery of releasable Ca2+ content after fatigue.
    Oba T; Kurono C; Nakajima R; Takaishi T; Ishida K; Fuller GA; Klomkleaw W; Yamaguchi M
    J Appl Physiol (1985); 2002 Dec; 93(6):1999-2008. PubMed ID: 12391105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of sarcolemma action potentials and excitability in muscle fatigue.
    Balog EM; Thompson LV; Fitts RH
    J Appl Physiol (1985); 1994 May; 76(5):2157-62. PubMed ID: 8063681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of K+ on the twitch and tetanic contraction in the sartorius muscle of the frog, Rana pipiens. Implication for fatigue in vivo.
    Renaud JM; Light P
    Can J Physiol Pharmacol; 1992 Sep; 70(9):1236-46. PubMed ID: 1493591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue.
    Cairns SP; Leader JP; Loiselle DS; Higgins A; Lin W; Renaud JM
    J Appl Physiol (1985); 2015 Mar; 118(6):662-74. PubMed ID: 25571990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of glibenclamide on frog skeletal muscle: evidence for K+ATP channel activation during fatigue.
    Light PE; Comtois AS; Renaud JM
    J Physiol; 1994 Mar; 475(3):495-507. PubMed ID: 8006831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of tolbutamide on the rate of fatigue and recovery in frog sartorius muscle.
    Comtois A; Light P; Renaud JM
    J Pharmacol Exp Ther; 1995 Sep; 274(3):1061-6. PubMed ID: 7562469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of pH on the kinetics of fatigue and recovery in frog sartorius muscle.
    Renaud JM; Mainwood GW
    Can J Physiol Pharmacol; 1985 Nov; 63(11):1435-43. PubMed ID: 3878223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue from high- and low-frequency muscle stimulation: role of sarcolemma action potentials.
    Metzger JM; Fitts RH
    Exp Neurol; 1986 Aug; 93(2):320-33. PubMed ID: 3732473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C
    Prylutskyy YI; Vereshchaka IV; Maznychenko AV; Bulgakova NV; Gonchar OO; Kyzyma OA; Ritter U; Scharff P; Tomiak T; Nozdrenko DM; Mishchenko IV; Kostyukov AI
    J Nanobiotechnology; 2017 Jan; 15(1):8. PubMed ID: 28086894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interactive effects of fatigue and pH on the ionic conductance of frog sartorius muscle fibers.
    Renaud JM; Mainwood GW
    Can J Physiol Pharmacol; 1985 Nov; 63(11):1444-53. PubMed ID: 2416420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical characteristics of human ankle dorsi- and plantar-flexor muscles. Comparative responses during fatiguing stimulation and recovery.
    Galea V
    Eur J Appl Physiol; 2001 Jul; 85(1-2):130-40. PubMed ID: 11513306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue-related changes in electomyogram activity of the cat gastrocnemius during frequency-modulated efferent stimulation.
    Kostyukov AI; Day S; Hellström F; Radovanovic S; Ljubisavljevic M; Windhorst U; Johansson H
    Neuroscience; 2000; 97(4):801-9. PubMed ID: 10842026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of random modulation of functional electrical stimulation parameters on muscle fatigue.
    Graham GM; Thrasher TA; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):38-45. PubMed ID: 16562630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel thienylhydrazone, (2-thienylidene)3,4-methylenedioxybenzoylhydrazine, increases inotropism and decreases fatigue of skeletal muscle.
    Gonzalez-Serratos H; Chang R; Pereira EF; Castro NG; Aracava Y; Melo PA; Lima PC; Fraga CA; Barreiro EJ; Albuquerque EX
    J Pharmacol Exp Ther; 2001 Nov; 299(2):558-66. PubMed ID: 11602667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Staircase potentiation in isolated frog skeletal muscle: power spectral analysis of the evoked compound muscle action potential.
    Barnes WS; Williams JH
    Comp Biochem Physiol A Comp Physiol; 1990; 96(3):387-94. PubMed ID: 1976480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle fatigue: cellular mechanisms.
    Allen DG; Lamb GD; Westerblad H
    Physiol Rev; 2008 Jan; 88(1):287-332. PubMed ID: 18195089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic correlates of fatigue and of recovery from fatigue in single frog muscle fibers.
    Nassar-Gentina V; Passonneau JV; Vergara JL; Rapoport SI
    J Gen Physiol; 1978 Nov; 72(5):593-606. PubMed ID: 310867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-frequency fatigue in rat skeletal muscle: role of extracellular ion concentrations.
    Cairns SP; Dulhunty AF
    Muscle Nerve; 1995 Aug; 18(8):890-8. PubMed ID: 7630351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.