These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11003819)

  • 1. Ontogenetic changes in characteristics required for endothermy in juvenile black skipjack tuna (Euthynnus lineatus).
    Dickson KA; Johnson NM; Donley JM; Hoskinson JA; Hansen MW; D'Souza Tessier J
    J Exp Biol; 2000 Oct; 203(Pt 20):3077-87. PubMed ID: 11003819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TUNAS AS SMALL AS 207 mm FORK LENGTH CAN ELEVATE MUSCLE TEMPERATURES SIGNIFICANTLY ABOVE AMBIENT WATER TEMPERATURE.
    Dickson K
    J Exp Biol; 1994 May; 190(1):79-93. PubMed ID: 9317376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontogenetic change in the amount and position of slow-oxidative myotomal muscle in relationship to regional endothermy in juvenile yellowfin tuna Thunnus albacares.
    Dickson JM; Dickson KA
    J Fish Biol; 2019 Sep; 95(3):940-951. PubMed ID: 31294823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum sustainable speeds and cost of swimming in juvenile kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus).
    Sepulveda C; Dickson KA
    J Exp Biol; 2000 Oct; 203(Pt 20):3089-101. PubMed ID: 11003820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for cranial endothermy in the opah (Lampris guttatus).
    Runcie RM; Dewar H; Hawn DR; Frank LR; Dickson KA
    J Exp Biol; 2009 Feb; 212(Pt 4):461-70. PubMed ID: 19181893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential heating and cooling rates in bigeye tuna (Thunnus obesus Lowe): a model of non-steady state heat exchange.
    Malte H; Larsen C; Musyl M; Brill R
    J Exp Biol; 2007 Aug; 210(Pt 15):2618-26. PubMed ID: 17644676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct and shared endothermic strategies in the heat producing tissues of tuna and other teleosts.
    Wu B; Gao X; Hu M; Hu J; Lan T; Xue T; Xu W; Zhu C; Yuan Y; Zheng J; Qin T; Xin P; Li Y; Gong L; Feng C; He S; Liu H; Li H; Wang Q; Ma Z; Qiu Q; Wang K
    Sci China Life Sci; 2023 Nov; 66(11):2629-2645. PubMed ID: 37273070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle and cardiac transcriptomics of a regionally endothermic fish, the Pacific bluefin tuna, Thunnus orientalis.
    Ciezarek A; Gardner L; Savolainen V; Block B
    BMC Genomics; 2020 Sep; 21(1):642. PubMed ID: 32942994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The red muscle morphology of the thresher sharks (family Alopiidae).
    Sepulveda CA; Wegner NC; Bernal D; Graham JB
    J Exp Biol; 2005 Nov; 208(Pt 22):4255-61. PubMed ID: 16272248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat exchnage in the black skipjack, and the blood-gas relationship of warm-bodied fishes.
    Graham JB
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1964-7. PubMed ID: 16592097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swimming kinematics of juvenile kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus).
    Donley JM; Dickson KA
    J Exp Biol; 2000 Oct; 203(Pt 20):3103-16. PubMed ID: 11003821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative studies of high performance swimming in sharks II. Metabolic biochemistry of locomotor and myocardial muscle in endothermic and ectothermic sharks.
    Bernal D; Smith D; Lopez G; Weitz D; Grimminger T; Dickson K; Graham JB
    J Exp Biol; 2003 Aug; 206(Pt 16):2845-57. PubMed ID: 12847128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swimming performance studies on the eastern Pacific bonito Sarda chiliensis, a close relative of the tunas (family Scombridae) II. Kinematics.
    Dowis HJ; Sepulveda CA; Graham JB; Dickson KA
    J Exp Biol; 2003 Aug; 206(Pt 16):2749-58. PubMed ID: 12847120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-tunnel studies of heat balance in swimming mako sharks.
    Bernal D; Sepulveda C; Graham JB
    J Exp Biol; 2001 Dec; 204(Pt 23):4043-54. PubMed ID: 11809779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of the red blood cells from two high-energy-demand teleosts, yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis), to catecholamines.
    Lowe TE; Brill RW; Cousins KL
    J Comp Physiol B; 1998 Aug; 168(6):405-18. PubMed ID: 9747521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of longitudinal body position and swimming speed on mechanical power of deep red muscle from skipjack tuna (Katsuwonus pelamis).
    Syme DA; Shadwick RE
    J Exp Biol; 2002 Jan; 205(Pt 2):189-200. PubMed ID: 11821485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and consequences of endothermy in fishes.
    Dickson KA; Graham JB
    Physiol Biochem Zool; 2004; 77(6):998-1018. PubMed ID: 15674772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic sources of heat and power in tuna muscles. II. Enzyme and metabolite profiles.
    Guppy M; Hulbert WC; Hochachka PW
    J Exp Biol; 1979 Oct; 82():303-20. PubMed ID: 11799687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow muscle function of Pacific bonito (Sarda chiliensis) during steady swimming.
    Ellerby DJ; Altringham JD; Williams T; Block BA
    J Exp Biol; 2000 Jul; 203(Pt 13):2001-13. PubMed ID: 10851117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR-based metabolic profiling and discrimination of wild tropical tunas by species, size category, geographic origin, and on-board storage condition.
    Bodin N; Amiel A; Fouché E; Sardenne F; Chassot E; Debrauwer L; Guillou H; Tremblay-Franco M; Canlet C
    Food Chem; 2022 Mar; 371():131094. PubMed ID: 34583182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.