These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 1100382)

  • 21. Fluorescent tRNA derivatives and ribosome recognition.
    Wintermeyer W; Robertson JM; Zachau HG
    Mol Biol Biochem Biophys; 1980; 32():368-75. PubMed ID: 7003351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Initial stages of the thermal unfolding of yeast phenylalanine transfer RNA as studied by chemical modification: the effect of magnesium.
    Rhodes D
    Eur J Biochem; 1977 Nov; 81(1):91-101. PubMed ID: 412674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 5-Methylcytidine is required for cooperative binding of Mg2+ and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA.
    Chen Y; Sierzputowska-Gracz H; Guenther R; Everett K; Agris PF
    Biochemistry; 1993 Sep; 32(38):10249-53. PubMed ID: 8399153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnesium cation induced conformational change of yeast tRNAPhe as studied by singlet-singlet energy transfer.
    Nagamatsu K; Miyazawa Y
    J Biochem; 1983 Dec; 94(6):1967-71. PubMed ID: 6368529
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Raman spectra and structure of yeast phenylalanine transfer RNA in the crystalline state and in solution.
    Chen MC; Giegé R; Lord RC; Rich A
    Biochemistry; 1975 Oct; 14(20):4385-91. PubMed ID: 1100103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA-ligant interactions. (I) Magnesium binding sites in yeast tRNAPhe.
    Holbrook SR; Sussman JL; Warrant RW; Church GM; Kim SH
    Nucleic Acids Res; 1977 Aug; 4(8):2811-20. PubMed ID: 333395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A magnesium-induced conformational transition in the loop of a DNA analog of the yeast tRNA(Phe) anticodon is dependent on RNA-like modifications of the bases of the stem.
    Guenther RH; Hardin CC; Sierzputowska-Gracz H; Dao V; Agris PF
    Biochemistry; 1992 Nov; 31(45):11004-11. PubMed ID: 1445838
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The binding of ethidium bromide to different conformations of tRNA. Unfolding of tertiary structure.
    Urbanke C; Römer R; Maass G
    Eur J Biochem; 1973 Mar; 33(3):511-6. PubMed ID: 4571499
    [No Abstract]   [Full Text] [Related]  

  • 29. Europium as a fluorescent probe of transfer RNA structure.
    Wolfson JM; Kearns DR
    Biochemistry; 1975 Apr; 14(7):1436-44. PubMed ID: 1092336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics of acyl transfer ribonucleic acid complexes of Escherichia coli phenylalanyl-tRNA synthetase. A conformational change is rate limiting in catalysis.
    Baltzinger M; Holler E
    Biochemistry; 1982 May; 21(10):2460-7. PubMed ID: 7046786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of excision of the Y-base on the interaction of tRNAPhe (yeast) with phenylalanyl-tRNA synthetase (yeast).
    Krauss G; Peters F; Maass G
    Nucleic Acids Res; 1976 Mar; 3(3):631-9. PubMed ID: 5707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of temperature and magnesium ions on the secondary and tertiary structures of tRNAPhe and 23 S RNA - infrared investigations.
    Herbeck R; Zundel G
    Biochim Biophys Acta; 1976 Jan; 418(1):52-62. PubMed ID: 1244851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new method to monitor the rate of conformational transitions in RNA.
    Maglott EJ; Glick GD
    Nucleic Acids Res; 1997 Aug; 25(16):3297-301. PubMed ID: 9241244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multistep mechanism of codon recognition by transfer ribonucleic acid.
    Labuda D; Pörschke D
    Biochemistry; 1980 Aug; 19(16):3799-805. PubMed ID: 7407070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence.
    Okabe N; Cramer F
    J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mg2+-induced tRNA folding.
    Serebrov V; Clarke RJ; Gross HJ; Kisselev L
    Biochemistry; 2001 Jun; 40(22):6688-98. PubMed ID: 11380264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of 5-methylcytidine in the anticodon arm of yeast tRNA(Phe): site-specific Mg2+ binding and coupled conformational transition in DNA analogs.
    Dao V; Guenther RH; Agris PF
    Biochemistry; 1992 Nov; 31(45):11012-9. PubMed ID: 1445839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Altering the intermediate in the equilibrium folding of unmodified yeast tRNAPhe with monovalent and divalent cations.
    Shelton VM; Sosnick TR; Pan T
    Biochemistry; 2001 Mar; 40(12):3629-38. PubMed ID: 11297430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spermine stabilizes the conformation of tRNAPhe in crystals.
    Prinz H; Furgac N; Cramer F
    Biochim Biophys Acta; 1976 Sep; 447(1):110-5. PubMed ID: 786374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dependence of tRNA structure in solution upon ionic condition of the solvent. Fluorescence studies of Mg2+ binding to tRNAPhe from barley embryos.
    Labuda D; Haertlé T; Augustyniak J
    Eur J Biochem; 1977 Sep; 79(1):293-301. PubMed ID: 913421
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.