BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 11004171)

  • 1. A single-transformation gene function test in diploid Candida albicans.
    Enloe B; Diamond A; Mitchell AP
    J Bacteriol; 2000 Oct; 182(20):5730-6. PubMed ID: 11004171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Recessive Lethal Alleles in the Diploid Genome of a Candida albicans Laboratory Strain Unveils a Potential Role of Repetitive Sequences in Buffering Their Deleterious Impact.
    Marton T; Feri A; Commere PH; Maufrais C; d'Enfert C; Legrand M
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies.
    Legrand M; Forche A; Selmecki A; Chan C; Kirkpatrick DT; Berman J
    PLoS Genet; 2008 Jan; 4(1):e1. PubMed ID: 18179283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system.
    Dennison PM; Ramsdale M; Manson CL; Brown AJ
    Fungal Genet Biol; 2005 Sep; 42(9):737-48. PubMed ID: 16043373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions.
    Wilson RB; Davis D; Mitchell AP
    J Bacteriol; 1999 Mar; 181(6):1868-74. PubMed ID: 10074081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional ligation of long-flanking homology regions to selection cassettes for efficient targeted gene-disruption in Candida albicans.
    Taneja V; Paul S; Ganesan K
    FEMS Yeast Res; 2004 Sep; 4(8):841-7. PubMed ID: 15450191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans.
    Reuss O; Vik A; Kolter R; Morschhäuser J
    Gene; 2004 Oct; 341():119-27. PubMed ID: 15474295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of Viable Candida albicans Mutants Lacking the "Essential" Protein Kinase Snf1 by Inducible Gene Deletion.
    Mottola A; Schwanfelder S; Morschhäuser J
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32817381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination.
    Morschhäuser J; Michel S; Staib P
    Mol Microbiol; 1999 May; 32(3):547-56. PubMed ID: 10320577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Clox Systems for rapid and efficient gene disruption in Candida albicans.
    Shahana S; Childers DS; Ballou ER; Bohovych I; Odds FC; Gow NA; Brown AJ
    PLoS One; 2014; 9(6):e100390. PubMed ID: 24940603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of ALS5 and ALS6 allelic variability in a geographically diverse collection of Candida albicans isolates.
    Zhao X; Oh SH; Jajko R; Diekema DJ; Pfaller MA; Pujol C; Soll DR; Hoyer LL
    Fungal Genet Biol; 2007 Dec; 44(12):1298-309. PubMed ID: 17625934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative transformation of Candida albicans, using a cloned Candida ADE2 gene.
    Kurtz MB; Cortelyou MW; Kirsch DR
    Mol Cell Biol; 1986 Jan; 6(1):142-9. PubMed ID: 3023819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allele-specific gene targeting in Candida albicans results from heterology between alleles.
    Yesland K; Fonzi WA
    Microbiology (Reading); 2000 Sep; 146 ( Pt 9)():2097-2104. PubMed ID: 10974097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, execution, and analysis of CRISPR-Cas9-based deletions and genetic interaction networks in the fungal pathogen Candida albicans.
    Halder V; Porter CBM; Chavez A; Shapiro RS
    Nat Protoc; 2019 Mar; 14(3):955-975. PubMed ID: 30737491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions.
    Wilson RB; Davis D; Enloe BM; Mitchell AP
    Yeast; 2000 Jan; 16(1):65-70. PubMed ID: 10620776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haplotyping a Non-meiotic Diploid Fungal Pathogen Using Induced Aneuploidies and SNP/CGH Microarray Analysis.
    Berman J; Forche A
    Methods Mol Biol; 2017; 1551():131-146. PubMed ID: 28138844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans.
    Wu W; Pujol C; Lockhart SR; Soll DR
    Genetics; 2005 Mar; 169(3):1311-27. PubMed ID: 15654090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants.
    Kelly R; Miller SM; Kurtz MB; Kirsch DR
    Mol Cell Biol; 1987 Jan; 7(1):199-208. PubMed ID: 3031459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of Fluconazole-Resistant Candida albicans Strains by Drug-Induced Mating Competence and Parasexual Recombination.
    Popp C; Ramírez-Zavala B; Schwanfelder S; Krüger I; Morschhäuser J
    mBio; 2019 Feb; 10(1):. PubMed ID: 30723130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene deletion in Candida albicans wild-type strains using the SAT1-flipping strategy.
    Sasse C; Morschhäuser J
    Methods Mol Biol; 2012; 845():3-17. PubMed ID: 22328364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.