These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 11004180)
1. Characterization of the ccpA gene of Enterococcus faecalis: identification of starvation-inducible proteins regulated by ccpA. Leboeuf C; Leblanc L; Auffray Y; Hartke A J Bacteriol; 2000 Oct; 182(20):5799-806. PubMed ID: 11004180 [TBL] [Abstract][Full Text] [Related]
2. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression. Darbon E; Servant P; Poncet S; Deutscher J Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon. Galinier A; Deutscher J; Martin-Verstraete I J Mol Biol; 1999 Feb; 286(2):307-14. PubMed ID: 9973552 [TBL] [Abstract][Full Text] [Related]
4. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Ludwig H; Rebhan N; Blencke HM; Merzbacher M; Stülke J Mol Microbiol; 2002 Jul; 45(2):543-53. PubMed ID: 12123463 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of the stress- and starvation-inducible gls24 operon has a pleiotrophic effect on cell morphology, stress sensitivity, and gene expression in Enterococcus faecalis. Giard JC; Rince A; Capiaux H; Auffray Y; Hartke A J Bacteriol; 2000 Aug; 182(16):4512-20. PubMed ID: 10913085 [TBL] [Abstract][Full Text] [Related]
6. CcpA-dependent and -independent control of beta-galactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream phosphotransferase system-encoding operon. Kaufman GE; Yother J J Bacteriol; 2007 Jul; 189(14):5183-92. PubMed ID: 17496092 [TBL] [Abstract][Full Text] [Related]
7. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. Reizer J; Bergstedt U; Galinier A; Küster E; Saier MH; Hillen W; Steinmetz M; Deutscher J J Bacteriol; 1996 Sep; 178(18):5480-6. PubMed ID: 8808939 [TBL] [Abstract][Full Text] [Related]
8. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. Martin-Verstraete I; Stülke J; Klier A; Rapoport G J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486 [TBL] [Abstract][Full Text] [Related]
9. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD. Puri-Taneja A; Schau M; Chen Y; Hulett FM J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317 [TBL] [Abstract][Full Text] [Related]
11. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Fujita Y; Miwa Y; Galinier A; Deutscher J Mol Microbiol; 1995 Sep; 17(5):953-60. PubMed ID: 8596444 [TBL] [Abstract][Full Text] [Related]
12. Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis. Tobisch S; Stülke J; Hecker M J Bacteriol; 1999 Aug; 181(16):4995-5003. PubMed ID: 10438772 [TBL] [Abstract][Full Text] [Related]
14. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. Lulko AT; Buist G; Kok J; Kuipers OP J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215 [TBL] [Abstract][Full Text] [Related]
16. Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. Presecan-Siedel E; Galinier A; Longin R; Deutscher J; Danchin A; Glaser P; Martin-Verstraete I J Bacteriol; 1999 Nov; 181(22):6889-97. PubMed ID: 10559153 [TBL] [Abstract][Full Text] [Related]
17. Residues His-15 and Arg-17 of HPr participate differently in catabolite signal processing via CcpA. Horstmann N; Seidel G; Aung-Hilbrich LM; Hillen W J Biol Chem; 2007 Jan; 282(2):1175-82. PubMed ID: 17085448 [TBL] [Abstract][Full Text] [Related]
18. CcpA represses the expression of the divergent cit operons of Enterococcus faecalis through multiple cre sites. Suárez CA; Blancato VS; Poncet S; Deutscher J; Magni C BMC Microbiol; 2011 Oct; 11():227. PubMed ID: 21989394 [TBL] [Abstract][Full Text] [Related]
19. Characterization of glucose-repression-resistant mutants of Bacillus subtilis: identification of the glcR gene. Stülke J; Martin-Verstraete I; Glaser P; Rapoport G Arch Microbiol; 2001 Jun; 175(6):441-9. PubMed ID: 11491085 [TBL] [Abstract][Full Text] [Related]
20. Enterococcus faecalis Maltodextrin Gene Regulation by Combined Action of Maltose Gene Regulator MalR and Pleiotropic Regulator CcpA. Grand M; Riboulet-Bisson E; Deutscher J; Hartke A; Sauvageot N Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]