BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 11004399)

  • 1. Acetaldehyde metabolism by wine lactic acid bacteria.
    Osborne JP; Mira de Orduña R; Pilone GJ; Liu SQ
    FEMS Microbiol Lett; 2000 Oct; 191(1):51-5. PubMed ID: 11004399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of free and sulfur-dioxide-bound acetaldehyde by malolactic lactic acid bacteria in white wine.
    Osborne JP; Dubé Morneau A; Mira de Orduña R
    J Appl Microbiol; 2006 Aug; 101(2):474-9. PubMed ID: 16882156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of acetaldehyde- and pyruvic acid-bound sulphur dioxide on wine lactic acid bacteria.
    Wells A; Osborne JP
    Lett Appl Microbiol; 2012 Mar; 54(3):187-94. PubMed ID: 22150460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetaldehyde released by Lactobacillus plantarum enhances accumulation of pyranoanthocyanins in wine during malolactic fermentation.
    Wang S; Li S; Zhao H; Gu P; Chen Y; Zhang B; Zhu B
    Food Res Int; 2018 Jun; 108():254-263. PubMed ID: 29735055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of SO₂ binding compounds by Oenococcus oeni during and after malolactic fermentation in white wine.
    Jackowetz JN; Mira de Orduña R
    Int J Food Microbiol; 2012 Apr; 155(3):153-7. PubMed ID: 22417710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of malolactic fermentation by Pediococcus damnosus on the composition and sensory profile of Albariño and Caiño white wines.
    Juega M; Costantini A; Bonello F; Cravero MC; Martinez-Rodriguez AJ; Carrascosa AV; Garcia-Moruno E
    J Appl Microbiol; 2014 Mar; 116(3):586-95. PubMed ID: 24206231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of wine-associated lactic acid bacteria to degrade biogenic amines.
    García-Ruiz A; González-Rompinelli EM; Bartolomé B; Moreno-Arribas MV
    Int J Food Microbiol; 2011 Aug; 148(2):115-20. PubMed ID: 21641669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactic acid bacteria in the quality improvement and depreciation of wine.
    Lonvaud-Funel A
    Antonie Van Leeuwenhoek; 1999; 76(1-4):317-31. PubMed ID: 10532386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of lactic acid populations associated with wine spoilage.
    Beneduce L; Spano G; Vernile A; Tarantino D; Massa S
    J Basic Microbiol; 2004; 44(1):10-6. PubMed ID: 14768022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance screening essay of wine lactic acid bacteria on lysozyme: efficacy of lysozyme in unclarified grape musts.
    Delfini C; Cersosimo M; Del Prete V; Strano M; Gaetano G; Pagliara A; Ambrò S
    J Agric Food Chem; 2004 Apr; 52(7):1861-6. PubMed ID: 15053521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of specific components from commercial inactive dry yeast winemaking preparations on the growth of wine lactic acid bacteria.
    Andújar-Ortiz I; Pozo-Bayón MA; García-Ruiz A; Moreno-Arribas MV
    J Agric Food Chem; 2010 Jul; 58(14):8392-9. PubMed ID: 20578762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of simultaneous and sequential malolactic fermentation in durian wine.
    Taniasuri F; Lee PR; Liu SQ
    Int J Food Microbiol; 2016 Aug; 230():1-9. PubMed ID: 27104664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment.
    Jiang J; Sumby KM; Sundstrom JF; Grbin PR; Jiranek V
    Food Microbiol; 2018 Aug; 73():150-159. PubMed ID: 29526200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethyl carbamate precursor citrulline formation from arginine degradation by malolactic wine lactic acid bacteria.
    Mira de Orduña R; Liu S; Patchett ML; Pilone GJ
    FEMS Microbiol Lett; 2000 Feb; 183(1):31-5. PubMed ID: 10650198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of the inhibitory effects of wine polyphenols on the growth of enological lactic acid bacteria.
    García-Ruiz A; Moreno-Arribas MV; Martín-Álvarez PJ; Bartolomé B
    Int J Food Microbiol; 2011 Feb; 145(2-3):426-31. PubMed ID: 21295882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolomics reveals alterations in both primary and secondary metabolites by wine bacteria.
    Lee JE; Hwang GS; Lee CH; Hong YS
    J Agric Food Chem; 2009 Nov; 57(22):10772-83. PubMed ID: 19919120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of new research and technologies for malolactic fermentation in wine.
    Sumby KM; Grbin PR; Jiranek V
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8111-32. PubMed ID: 25142694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of arc genes related with the ethyl carbamate precursors in wine lactic acid bacteria.
    Araque I; Gil J; Carreté R; Bordons A; Reguant C
    J Agric Food Chem; 2009 Mar; 57(5):1841-7. PubMed ID: 19219988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oenococcus oeni cells immobilized on delignified cellulosic material for malolactic fermentation of wine.
    Agouridis N; Kopsahelis N; Plessas S; Koutinas AA; Kanellaki M
    Bioresour Technol; 2008 Dec; 99(18):9017-20. PubMed ID: 18501594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine.
    Bartowsky EJ; Borneman AR
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):441-7. PubMed ID: 21870044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.