BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 11004540)

  • 1. Kinetic and hydrodynamic studies of the NodL O-acetyl transferase of Rhizobium leguminosarum: a random-order ternary complex mechanism for acetyl transfer by a roughly spherical trimeric protein.
    Hindson VJ; Dunn SO; Rowe AJ; Shaw WV
    Biochim Biophys Acta; 2000 Jun; 1479(1-2):203-13. PubMed ID: 11004540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nodulation protein NodL of Rhizobium leguminosarum O-acetylates lipo-oligosaccharides, chitin fragments and N-acetylglucosamine in vitro.
    Bloemberg GV; Thomas-Oates JE; Lugtenberg BJ; Spaink HP
    Mol Microbiol; 1994 Feb; 11(4):793-804. PubMed ID: 8196551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate specificity and kinetic studies of nodulation protein NodL of Rhizobium leguminosarum.
    Bloemberg GV; Lagas RM; van Leeuwen S; Van der Marel GA; Van Boom JH; Lugtenberg BJ; Spaink HP
    Biochemistry; 1995 Oct; 34(39):12712-20. PubMed ID: 7548024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization and preliminary diffraction studies of NodL, a rhizobial O-acetyl-transferase involved in the host-specific nodulation of legume roots.
    Dunn SM; Moody PC; Downie JA; Shaw WV
    Protein Sci; 1996 Mar; 5(3):538-41. PubMed ID: 8868492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random-order ternary complex reaction mechanism of serine acetyltransferase from Escherichia coli.
    Hindson VJ; Shaw WV
    Biochemistry; 2003 Mar; 42(10):3113-9. PubMed ID: 12627979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhizobial NodL O-acetyl transferase and NodS N-methyl transferase functionally interfere in production of modified Nod factors.
    López-Lara IM; Kafetzopoulos D; Spaink HP; Thomas-Oates JE
    J Bacteriol; 2001 Jun; 183(11):3408-16. PubMed ID: 11344149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the mechanism of chloramphenicol acetyltransferase by steady-state kinetics. Evidence for a ternary-complex mechanism.
    Kleanthous C; Shaw WV
    Biochem J; 1984 Oct; 223(1):211-20. PubMed ID: 6594136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic mechanism of chloramphenicol acetyltransferase: the role of ternary complex interconversion in rate determination.
    Ellis J; Bagshaw CR; Shaw WV
    Biochemistry; 1995 Dec; 34(51):16852-9. PubMed ID: 8527461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum.
    Spaink HP; Wijfjes AH; van der Drift KM; Haverkamp J; Thomas-Oates JE; Lugtenberg BJ
    Mol Microbiol; 1994 Sep; 13(5):821-31. PubMed ID: 7815941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serine acetyltransferase of Escherichia coli: substrate specificity and feedback control by cysteine.
    Hindson VJ
    Biochem J; 2003 Nov; 375(Pt 3):745-52. PubMed ID: 12940772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The NodL and NodJ proteins from Rhizobium and Bradyrhizobium strains are similar to capsular polysaccharide secretion proteins from gram-negative bacteria.
    Vázquez M; Santana O; Quinto C
    Mol Microbiol; 1993 Apr; 8(2):369-77. PubMed ID: 8316086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate binding to chloramphenicol acetyltransferase: evidence for negative cooperativity from equilibrium and kinetic constants for binary and ternary complexes.
    Ellis J; Bagshaw CR; Shaw WV
    Biochemistry; 1991 Nov; 30(44):10806-13. PubMed ID: 1932000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human acetyl-coenzyme A:alpha-glucosaminide N-acetyltransferase. Kinetic characterization and mechanistic interpretation.
    Meikle PJ; Whittle AM; Hopwood JJ
    Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):327-33. PubMed ID: 7755582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nodL gene from Rhizobium leguminosarum is homologous to the acetyl transferases encoded by lacA and cysE.
    Downie JA
    Mol Microbiol; 1989 Nov; 3(11):1649-51. PubMed ID: 2615659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic mechanism of the serine acetyltransferase from Haemophilus influenzae.
    Johnson CM; Huang B; Roderick SL; Cook PF
    Arch Biochem Biophys; 2004 Sep; 429(2):115-22. PubMed ID: 15313214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The production of species-specific highly unsaturated fatty acyl-containing LCOs from Rhizobium leguminosarum bv. trifolii is stringently regulated by nodD and involves the nodRL genes.
    Schlaman HR; Olsthoorn MM; Harteveld M; Dörner L; Djordjevic MA; Thomas-Oates JE; Spaink HP
    Mol Plant Microbe Interact; 2006 Mar; 19(3):215-26. PubMed ID: 16570652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of an aminoglycoside modifying enzyme with low substrate promiscuity: The aminoglycoside N3 acetyltransferase-VIa.
    Kumar P; Serpersu EH
    Proteins; 2017 Jul; 85(7):1258-1265. PubMed ID: 28316100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the Roles of Allosteric Domain Arginine, Aspartate, and Glutamate Residues of Rhizobium etli Pyruvate Carboxylase in Relation to Its Activation by Acetyl CoA.
    Sirithanakorn C; Jitrapakdee S; Attwood PV
    Biochemistry; 2016 Aug; 55(30):4220-8. PubMed ID: 27379711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic and structural analysis of human spermidine/spermine N1-acetyltransferase.
    Hegde SS; Chandler J; Vetting MW; Yu M; Blanchard JS
    Biochemistry; 2007 Jun; 46(24):7187-95. PubMed ID: 17516632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into the substrate binding mechanism of novel ArgA from Mycobacterium tuberculosis.
    Das U; Singh E; Dharavath S; Tiruttani Subhramanyam UK; Pal RK; Vijayan R; Menon S; Kumar S; Gourinath S; Srinivasan A
    Int J Biol Macromol; 2019 Mar; 125():970-978. PubMed ID: 30576731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.