These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11005746)

  • 21. Lower extremity functional neuromuscular stimulation in cases of spinal cord injury.
    Cybulski GR; Penn RD; Jaeger RJ
    Neurosurgery; 1984 Jul; 15(1):132-46. PubMed ID: 6382044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clinical experience with reinforced, anchored intramuscular electrodes for functional neuromuscular stimulation.
    Prochazka A; Davis LA
    J Neurosci Methods; 1992 May; 42(3):175-84. PubMed ID: 1501502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Considerations in designing acceptable neuromuscular stimulation systems for restoring function in paralyzed limbs.
    Gruner JA
    Cent Nerv Syst Trauma; 1986; 3(1):37-47. PubMed ID: 3524867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinematic and kinetic benefits of implantable peroneal nerve stimulation in people with post-stroke drop foot using an ankle-foot orthosis.
    Berenpas F; Schiemanck S; Beelen A; Nollet F; Weerdesteyn V; Geurts A
    Restor Neurol Neurosci; 2018; 36(4):547-558. PubMed ID: 29889089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving Walking with an Implanted Neuroprosthesis for Hip, Knee, and Ankle Control After Stroke.
    Makowski NS; Kobetic R; Lombardo LM; Foglyano KM; Pinault G; Selkirk SM; Triolo RJ
    Am J Phys Med Rehabil; 2016 Dec; 95(12):880-888. PubMed ID: 27231842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A knee and ankle flexing hybrid orthosis for paraplegic ambulation.
    Greene PJ; Granat MH
    Med Eng Phys; 2003 Sep; 25(7):539-45. PubMed ID: 12835066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Forward stair descent with hybrid neuroprosthesis after paralysis: Single case study demonstrating feasibility.
    Bulea TC; Kobetic R; Audu ML; Schnellenberger JR; Pinault G; Triolo RJ
    J Rehabil Res Dev; 2014; 51(7):1077-94. PubMed ID: 25437932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recruitment properties of intramuscular and nerve-trunk stimulating electrodes.
    Singh K; Richmond FJ; Loeb GE
    IEEE Trans Rehabil Eng; 2000 Sep; 8(3):276-85. PubMed ID: 11001507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hip and knee effects after implantation of a drop foot stimulator.
    Yao D; Lahner M; Jakubowitz E; Thomann A; Ettinger S; Noll Y; Stukenborg-Colsman C; Daniilidis K
    Technol Health Care; 2017; 25(3):599-606. PubMed ID: 28128773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive control of functional neuromuscular stimulation-induced knee extension exercise.
    Ezenwa BN; Glaser RM; Couch W; Figoni SF; Rodgers MM
    J Rehabil Res Dev; 1991; 28(4):1-8. PubMed ID: 1941644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial Walking Technologies to Improve Gait in Cerebral Palsy: Multichannel Neuromuscular Stimulation.
    Rose J; Cahill-Rowley K; Butler EE
    Artif Organs; 2017 Nov; 41(11):E233-E239. PubMed ID: 29148138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of functional electrical stimulation in the lower extremities of incomplete spinal cord injured patients.
    Bajd T; Kralj A; Stefancic M; Lavrac N
    Artif Organs; 1999 May; 23(5):403-9. PubMed ID: 10378929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Restoring unassisted natural gait to paraplegics via functional neuromuscular stimulation: a computer simulation study.
    Yamaguchi GT; Zajac FE
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):886-902. PubMed ID: 2227975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcutaneous electrical nerve stimulation combined with task-related training improves lower limb functions in subjects with chronic stroke.
    Ng SS; Hui-Chan CW
    Stroke; 2007 Nov; 38(11):2953-9. PubMed ID: 17901383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of functional electrical stimulation to long leg braces for upright mobility for children with complete thoracic level spinal injuries.
    Bonaroti D; Akers JM; Smith BT; Mulcahey MJ; Betz RR
    Arch Phys Med Rehabil; 1999 Sep; 80(9):1047-53. PubMed ID: 10489007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Response of gait deficits to neuromuscular electrical stimulation for stroke survivors.
    Daly JJ
    Expert Rev Neurother; 2006 Oct; 6(10):1511-22. PubMed ID: 17078790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The strength of the ankle dorsiflexors has a significant contribution to walking speed in people who can walk independently after stroke: an observational study.
    Dorsch S; Ada L; Canning CG; Al-Zharani M; Dean C
    Arch Phys Med Rehabil; 2012 Jun; 93(6):1072-6. PubMed ID: 22464738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ankle-foot orthoses: effect on gait abnormalities in tibial nerve paralysis.
    Lehmann JF; Condon SM; de Lateur BJ; Smith JC
    Arch Phys Med Rehabil; 1985 Apr; 66(4):212-8. PubMed ID: 3985771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiologic aspects of spinal cord injury and functional neuromuscular stimulation.
    Glaser RM
    Cent Nerv Syst Trauma; 1986; 3(1):49-62. PubMed ID: 3524868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.