BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 11005818)

  • 1. Evidence for a two-electron transfer using the all-ferrous Fe protein during nitrogenase catalysis.
    Nyborg AC; Johnson JL; Gunn A; Watt GD
    J Biol Chem; 2000 Dec; 275(50):39307-12. PubMed ID: 11005818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced efficiency of ATP hydrolysis during nitrogenase catalysis utilizing reductants that form the all-ferrous redox state of the Fe protein.
    Erickson JA; Nyborg AC; Johnson JL; Truscott SM; Gunn A; Nordmeyer FR; Watt GD
    Biochemistry; 1999 Oct; 38(43):14279-85. PubMed ID: 10572002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of steady state Fe and MoFe protein interactions during nitrogenase catalysis.
    Johnson JL; Nyborg AC; Wilson PE; Tolley AM; Nordmeyer FR; Watt GD
    Biochim Biophys Acta; 2000 Nov; 1543(1):24-35. PubMed ID: 11087938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic studies on electron transfer and interaction between nitrogenase components from Azotobacter vinelandii.
    Hageman RV; Burris RH
    Biochemistry; 1978 Oct; 17(20):4117-24. PubMed ID: 708696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of a tight 1:1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for long-range interactions between the Fe protein binding sites during catalytic hydrogen evolution.
    Clarke TA; Maritano S; Eady RR
    Biochemistry; 2000 Sep; 39(37):11434-40. PubMed ID: 10985789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-steady-state MgATP-dependent proton production and electron transfer by nitrogenase from Azotobacter vinelandii.
    Duyvis MG; Wassink H; Haaker H
    Eur J Biochem; 1994 Nov; 225(3):881-90. PubMed ID: 7957225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of MgATP hydrolysis in nitrogenase catalysis.
    Cordewener J; Krüse-Wolters M; Wassink H; Haaker H; Veeger C
    Eur J Biochem; 1988 Mar; 172(3):739-45. PubMed ID: 2965012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover.
    Chan JM; Christiansen J; Dean DR; Seefeldt LC
    Biochemistry; 1999 May; 38(18):5779-85. PubMed ID: 10231529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene.
    Fisher K; Dilworth MJ; Kim CH; Newton WE
    Biochemistry; 2000 Mar; 39(11):2970-9. PubMed ID: 10715117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An all-ferrous state of the Fe protein of nitrogenase. Interaction with nucleotides and electron transfer to the MoFe protein.
    Angove HC; Yoo SJ; Münck E; Burgess BK
    J Biol Chem; 1998 Oct; 273(41):26330-7. PubMed ID: 9756863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogenase of Azotobacter vinelandii: kinetic analysis of the Fe protein redox cycle.
    Duyvis MG; Wassink H; Haaker H
    Biochemistry; 1998 Dec; 37(50):17345-54. PubMed ID: 9860849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence That the Pi Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle.
    Yang ZY; Ledbetter R; Shaw S; Pence N; Tokmina-Lukaszewska M; Eilers B; Guo Q; Pokhrel N; Cash VL; Dean DR; Antony E; Bothner B; Peters JW; Seefeldt LC
    Biochemistry; 2016 Jul; 55(26):3625-35. PubMed ID: 27295169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39.
    Lanzilotta WN; Fisher K; Seefeldt LC
    J Biol Chem; 1997 Feb; 272(7):4157-65. PubMed ID: 9020128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonenzymatic synthesis of the P-cluster in the nitrogenase MoFe protein: evidence of the involvement of all-ferrous [Fe4S4](0) intermediates.
    Rupnik K; Lee CC; Wiig JA; Hu Y; Ribbe MW; Hales BJ
    Biochemistry; 2014 Feb; 53(7):1108-16. PubMed ID: 24520862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A continuous, spectrophotometric activity assay for nitrogenase using the reductant titanium(III) citrate.
    Seefeldt LC; Ensign SA
    Anal Biochem; 1994 Sep; 221(2):379-86. PubMed ID: 7810881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Klebsiella pneumoniae nitrogenase. The pre-steady-state kinetics of MoFe-protein reduction and hydrogen evolution under conditions of limiting electron flux show that the rates of association with the Fe-protein and electron transfer are independent of the oxidation level of the MoFe-protein.
    Fisher K; Lowe DJ; Thorneley RN
    Biochem J; 1991 Oct; 279 ( Pt 1)(Pt 1):81-5. PubMed ID: 1656943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions of Azotobacter vinelandii nitrogenase using Ti(III) as reductant.
    Nyborg AC; Erickson JA; Johnson JL; Gunn A; Truscott SM; Watt GD
    J Inorg Biochem; 2000 Mar; 78(4):371-81. PubMed ID: 10857919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide-assisted [Fe4S4] redox state interconversions of the Azotobacter vinelandii Fe protein and their relevance to nitrogenase catalysis.
    Jacobs D; Watt GD
    Biochemistry; 2013 Jul; 52(28):4791-9. PubMed ID: 23815521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.